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Abstract

The central question of the policy debate on public education is how to get more
for less. Charter schools have been a tool in this arena to pressure traditional public
schools to improve or lose students to them. Moreover, charter schools designated as
“High-performing” have recently been allowed to expand capacity at will in Florida,
while the remainder need to request such permission. I leverage this policy reform
and evaluate its influence on education access and quality. I develop and estimate a
tractable dynamic model that highlights the (costly) adjustment of schools’ capacity
and their “effort” to improve quality and their dynamic response to the competitive
environment. I find evidence that obtaining “High-performing” designation reduces
adjustment costs of capacity, which is valuable to charter schools. More importantly,
such charter schools exert pressure on traditional public schools nearby. Through
simulation exercises, I show that targeting value-added, not just performance level,
would improve the mean performance of the entire education sector and enhance
equity of access.
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1 Introduction

The ultimate goal of school choice policies is to improve education quality in the ag-
gregate. Proponents of school choice programs mainly highlight two central mechanisms
that support this objective. First, school choice programs may increase quality, variety,
and access to the alternatives to students’ assigned options.1 Second, such programs
might have competitive spillovers on traditional public schools (“TPS” henceforth) and
influence their productivity.2 In the U.S., charter schools are publicly funded (and tuition-
free) but are privately run, often by for-profit enterprises. They serve as a primary instru-
ment for providing school choice. Consequently, proper regulations could help incentivize
charter schools to raise quality and accessibility, and can trigger competitive spillovers
across the entire education sector, creating a “tide that lifts all boats” (Hoxby 2003).

In this paper, I use detailed administrative data to analyze a large-scale policy that
incentivizes certain charter schools to increase their performance. The policy does so by
conditioning expansion eligibility on past performance. The primary goals of the paper
are to assess the policy effects on students’ academic performance and access to high-
quality education and explore alternative incentive schemes that do better. The policy I fo-
cus on is the introduction of the Florida High-performing Charter School Statute in 2012.
This statute gives “High-performing” (“HP” henceforth) designation to charter schools
with three consecutive years of exemplary performance. Such HP charter schools are au-
thorized to expand enrollment capacity without obtaining approval from local districts.
I show that HP charter schools increase the number of classrooms for instruction upon
being designated. More importantly, using a difference-in-difference analysis, I find that
following the introduction of the policy, student test scores increase more in traditional
public schools that are subject to more competitive pressure from neighboring HP charter
schools.

Two underlying mechanisms are potentially critical to explain these patterns. First,
the policy could, by eliminating the adjustment costs imposed by the regulatory con-
straint, motivate HP charter schools to expand capacity. Second, the potential competi-
tive pressure of future expansion of HP charter schools may push TPSs to improve their
performance. Both mechanisms dynamically influence the charter sector’s capacity and
the overall quality provision of all schools. Although these patterns are suggestive in
terms of the underlying mechanisms at work, they are of limited use in understanding
the aggregate effect on all schools and disentangling the importance of each mechanism

1Some studies have found that highly effective charter programs lead to improvements in students’ test
scores and future life choices (Abdulkadiroğlu et al. 2011; Booker et al. 2011; Angrist et al. 2016; Dobbie and
Fryer 2020; Cohodes et al. 2021; Cohodes and Feigenbaum 2021).

2Some studies have found that TPSs increase performance when facing competitive pressure from the
choice programs in various contexts (Figlio and Hart 2014; Mehta 2017; Gilraine et al. 2021; Gilraine et al.
2023).
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quantitatively without further structure being imposed. A better understanding of the
relative importance of these mechanisms is helpful for the primary goal of this paper,
namely, improving policy. To achieve this goal, I develop and estimate a dynamic model
of schools’ decision-making. I explicitly model the dependence of schools’ decisions to
expand and exert effort (in improving performance) on the adjustment costs and compet-
itive environment they face.

To estimate the model, I assemble and examine a rich dataset for Florida that tracks
the annual operation of 630 regular charter schools and 2411 TPSs serving K-8 grades
from 2006-7 to the 2018-19 school year. The dataset provides a comprehensive history
of each school’s number of classrooms for instruction, performance level, educational
effort measured by schools’ value-added, operating cost, HP designation status, local
demographics, and competitive pressure. These supply-side dynamics can be further
linked to student enrollment changes within schools.

The dynamic model I develop maps schools’ two key decisions, capacity expansion
and educational effort (or inputs), to the distribution of schools’ performance and capac-
ity. Each period, charter schools choose educational effort, which determines students’
performance, as well as additional capacity to expand. TPSs only choose educational ef-
fort. Both decisions are subject to adjustment costs. Furthermore, the incentive scheme
induced by the HP policy is modeled as follows: Charter schools can earn HP designation
by performing well, and this designation reduces their future cost of adjusting capacity.
Finally, schools’ decisions thus affect their future capacity, performance levels, designa-
tion status, and, importantly, the competitive environment in the market. All of these
factors influence their future enrollment, one of the primal components of their objective
functions, via the demand side.

The simulation of the model presents several empirical challenges. First, modeling
schools’ strategic interaction in a dynamic game using MPNE, or Markov Perfect Nash
Equilibrium (Maskin and Tirole 1988a; Maskin and Tirole 1988b), is computationally pro-
hibitive. In typical urban school districts, such as the Miami-Dade School District, the av-
erage number of neighboring schools within 3 miles of a school is more than 20. Further,
by allowing for rich school heterogeneity, the dynamic game framework generates a par-
ticularly high-dimensional state space of the school.3 To alleviate the computational bur-

3Aguirregabiria et al. (2021) use a numerical example of Pakes and McGuire (1994) model to illustrate the
large state space problem. The model, with ten firms choosing only 20 different quality levels in a dynamic
game, has over 10 trillion states. In the context of this paper, a model allowing a school to have four
performance levels (e.g., A, B, C, D grades), three capacity levels (e.g., less than 10, between 10 and 20, and
more than 20 classrooms) and ten competitors has more than 60 billion states. Additionally, it is possible
to find populous communities of relatively small area size with many schools, as in the example of Miami-
Dade School District. Schools in these populous regions typically have overlapping sets of neighboring
schools. This fact implies that a local school’s demand can be influenced by schools far away, which further
increases the number of potential competitors for the local school, escalating the computation burden.
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den while allowing the model to be rich enough for reasonable counterfactual analysis, I
make the following assumptions about schools’ beliefs and responses to their enrollment.
First, I assume that each school only uses its own state and a uni-dimensional summary
statistics about the market conditions it faces to calculate their current and future enroll-
ment. This assumption is analogous to what is done in a static monopolistic competition
model. Second, each school forms beliefs on the transition of this uni-dimensional state
that are consistent with how the market evolves. The first assumption assures tractability
by reducing the dimensionality of the state space required by MPNE. The second as-
sumption endogenizes schools’ belief on the competitive environment characterized by
the uni-dimensional state, allowing schools to alter their beliefs on future competitive en-
vironment as policies change, especially when they dramatically influence the regulatory
environment.

Using the estimated models, I conduct two comparisons of the incentive schemes. I
first compare the existing HP scheme with the “no-HP” scheme to explore the policy ef-
fects. The no-HP scheme eliminates the existing designation system. I also compare an
alternative scheme, named “Target Value-Added”, that targets high value-added charter
schools and grants them more opportunities to earn expansion eligibility. This alternative
scheme is motivated by the concern that the existing scheme may exacerbate inequal-
ity in access to high value-added charter schools across different socioeconomic status
(SES) groups. Under the existing scheme, many charter schools not designated as HP
do have high value-added. These schools typically serve lower SES households and do
not achieve the required performance levels for HP designation. For this reason, I focus
on the inequality associated with the existing scheme versus the counterfactuals under
inspection.

I forward-simulate the evolution of the largest Florida school district starting in 2012.
The mean performance of the entire education sector increases the most under the Tar-
get Value-Added scheme, and the existing HP also outperforms the no-HP scheme in the
same way. The increase of the charter sector accessibility (in terms of capacity) is also the
highest under the Target Value-Added scheme. In explaining these differences in perfor-
mance and accessibility across schemes, I find that the incentive channel accounts rela-
tively more for the accessibility difference. In contrast, the competition channel explains
the performance difference. Digging into the variance of performance and accessibility
at the end of the inspection window, I find that the Target Value-Added scheme reduces
the variance of performance across schools and improves equity of access by allowing for
more expansion of high value-added charter schools in the lower SES regions, compared
to the existing HP scheme.

The design and implementation of school choice programs are at the forefront of ed-
ucation research. For example, using vouchers to increase choice has been extensively
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researched and evidence shows that they are effective in countries where private edu-
cation accounts for a large market share (see Hsieh and Urquiola (2006), Neilson (2021),
and Arcidiacono et al. (2021). The underlying idea of vouchers is to increase students’
alternatives to expensive private schools. Therefore, relaxing capacity constraints for HP
charter schools is like increasing the number of vouchers for such schools. To some ex-
tent, capacity regulation of this kind is a more “controlled” way to direct students toward
targeted schools aligned with the policymakers’ goal. Therefore, comparing the capacity
regulation of charter schools with extensively researched voucher systems can improve
the understanding of both policy tools for scholars.

However, the market environment of voucher systems contrasts dramatically with the
public education market, where the government fully funds tuition. The “non-price” na-
ture of public education markets prohibits policy tools like vouchers to incentivize char-
ter and TPSs. Therefore, taking advantage of the incentive for capacity expansion is more
practically relevant and can enrich the toolbox for policymakers in public education mar-
kets. In this regard, this paper is the first attempt to investigate such policies using an em-
pirical strategy to both establish novel facts and develop a dynamic quantitative model
to explore alternative schemes that do better. Furthermore, if proven beneficial, such pol-
icy reforms may be easier to implement than the extensively researched public education
policies that increase spending in public schools because they do not involve increasing
expenditure.4 It is an incentive scheme that imposes rules in influencing schools’ deci-
sions and does not explicitly require increasing or redistributing money across schools.
5

Contribution and Related Literature. This paper contributes to an extensive literature
on school choice in the public-private education systems. Milton Friedman argued that
the market-based school choice through vouchers for private school attendance would fa-
cilitate Tiebout-style competition without necessitating community relocation. It would
extend educational choices to previously underserved families and theoretically enhance
the overall quality of education (Friedman 1955; Hoxby 2003). School choice programs
typically take the form of charter schools in the U.S. education market. Many studies,
especially those using “lottery estimates” (Hoxby and Murarka 2009; Abdulkadiroğlu

4These policies focused on increasing spending are widely discussed by Cellini et al. (2010), Martorell
et al. (2015), Jackson et al. (2016), Dinerstein and Smith (2021), and Asker et al. (2022), among others.

5This view of the policy potentially ignores the fiscal externality imposed on the TPSs and school dis-
tricts. Previous research has found that charter expansion could reduce the district funding to TPSs or
alter TPSs’ spending structure (Ridley and Terrier 2018; Slungaard Mumma 2022; Ladd and Singleton
2020). Fully internalizing these costs in designing school choice policies is not a focus of this paper and
can be a potential direction for future economic research in broader settings. Similar policies have been
seen in Florida, Massachusetts (Ridley and Terrier 2018), Missouri, Louisiana (https://qualitycharters.
org/state-policy/growing-high-performing-charters/), and Arizona (https://asbcs.az.gov/sites/default/
files/Replication%20Application Revised%201.20.2021.pdf)
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et al. 2011; Angrist et al. 2016), have shown that the impact of charter schools on stu-
dent achievement can be both significantly positive and sizable, especially for the “No-
excuses” charter school model (Cohodes and Parham 2021). However, these charter pro-
grams and many charter schools are under capacity constraints.6 Therefore, it is natural
for scholars and policymakers to consider policies that alleviate the capacity constraint
for charter schools. By analyzing this novel policy, my work casts light on the trade-off
involved in different ways of charter expansion. Specifically, I address the importance of
capacity deregulation in designing large-scale school choice policies and provide a quan-
titative framework enabling comparison of schools’ performance across policy schemes.

Within the school choice literature, this paper relates to the strand that analyzes the
policy effects of charter school expansion. Existing research on charter school expansion
has focused almost solely on the impact of entry of charter schools, in particular, on the
competitive pressure it places on TPSs (Imberman 2011; Jackson 2012; Figlio and Hart
2014; Mehta 2017; Gilraine et al. 2021).7 However, the form of charter expansion in this
paper is novel: it leverages the eligibility to expand capacity after charter schools enter.
Therefore, by thoroughly analyzing the novel policy, I address the importance of charter
capacity previously ignored in the charter expansion literature.8 Notably, the core dif-
ference between the policies that focus on extensive margin, i.e., charter entry, and the
ones on intensive margin, e.g., the HP scheme, is that the latter targets the charter schools
with proven track records. It gives policymakers more information about the post-entry
dynamics of charter schools to make better decisions on what charter schools to target
and to introduce to the market. Relatedly, under the theme of expanding and replicat-
ing existing charters, another niche literature looks at the specific practices for replicating
effective charter programs (Zimmer and Buddin 2007; Angrist et al. 2013; Fryer 2014; Co-
hodes et al. 2021). I differ from this literature by using evidence from a large-scale state
policy that could generate a spillover effect across sectors, particularly on TPSs.

The causal inference strategy applied in this paper builds on the literature that iden-
tifies the competitive spillovers of charter schools. This literature has typically found
contextual and sometimes conflicting results on competitive spillovers by charter expan-
sion across studies, as Figlio et al. (2021), a closely related paper, point out.9 Moreover,

6In 2012, 61% of Florida charter schools were oversubscribed. Among these, 40% received applications
1.5 times the year’s enrolling target, and over half were rated as “A,” marking their top-tier academic per-
formance. Additionally, among the oversubscribed schools, 46% are located in lower-than-median income
regions.

7Other papers following this strand also discuss charter expansion in its consequences for inequality in
charter access (Singleton 2019), its effect on racial segregation (Monarrez et al. 2022), and its influence on
district budgets for TPSs (Baker et al. 2015; Epple et al. 2015; Buerger and Bifulco 2019; Slungaard Mumma
2022; Ladd and Singleton 2020).

8Notably, there is growing attention on inspecting student outcomes influenced by public schools’ ca-
pacity and facility investment (Martorell et al. 2016; Biasi et al. 2023).

9For examples, see Hoxby and Murarka (2009), Sass (2006), Zimmer and Buddin (2007), Bettinger (2005),
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because of data limitations and lack of policy variation, causal studies in this literature
are scarce.10 In this paper, I tackle these empirical challenges by gathering grade-subject
level test scores and taking advantage of the natural experiment created by the policy
change in the charter sector. I develop a difference-in-difference specification and utilize
a unique feature of the test score data to identify the competitive responses and attribute
them to schools’ input change. I provide the first estimates of the competitive spillovers
on TPSs’ test scores of the new policy scheme focusing on charter capacity regulation.
The results suggest a new source of competitive pressure imposed on TPSs: neighboring
charter schools’ eligibility to expand capacity. Furthermore, the competitive responses
are larger than those obtained in similar contexts (Figlio and Hart 2014; Figlio et al. 2021).

The structural modeling approach puts this paper in the growing literature that fo-
cuses on the industrial organization of the education supply. Papers in this literature are
typically model-driven and explicitly quantify students‘ choice of schools and education
providers’ responses, such as increasing quality, entry, and exit. These papers further link
the supply and demand in an equilibrium model to generate policy-relevant outcomes.11

However, my work is the first to develop a quantitative dynamic model incorporating
decisions on capacity and performance in the K-12 setting. Moreover, the model is de-
signed to be computationally tractable and address schools’ responses to the competitive
environment in a dynamic setting. My work hence follows recent attempts to apply quan-
titative dynamic models to study education markets.12

The remainder of the paper proceeds as follows. Section 2 provides industry back-
ground. Section 3 introduces data sources and the sample under inspection. Section 4
shows descriptive patterns in the Florida education market and evidence of the policy
effects. Section 5 introduces the current version of the quantitative model. Section 6 intro-
duces empirical strategy in estimating the model. Section 7 shows estimates of the model.
Section 8 displays simulations based on counterfactual policies. Section 9 concludes and

Imberman (2011), Winters (2012), Cordes (2018), Ridley and Terrier (2018), and Gilraine et al. (2021).
10Figlio et al. (2021) have briefly surveyed the current state of the literature. They claim that several of

the studies have been limited to single districts or a small set of districts (e.g., Zimmer and Buddin (2007),
Winters (2012), and Cordes (2018)), while studies that have used statewide data generally look at the very
early years of charter policies and over short periods (e.g., Bettinger (2005), Bifulco and Ladd (2006), and
Sass (2006)). Other studies that take a national perspective are limited to district-level data (Han and Keefe
2020).

11These outcomes include students’ welfare, test scores, access to schools, and segregation (Hastings et al.
2009; Neilson 2021; Ferreyra and Kosenok 2018; Mehta 2017; Singleton 2019; Allende 2019; Dinerstein and
Smith 2021; Arcidiacono et al. 2021; Bau 2022; Dinerstein et al. 2022).

12For example, Larroucau and Rios (2022) investigate the effects of centralized assignment mechanisms
in influencing outcomes and choices after their initial assignment to college. Hahm and Park (2022) explore
how preference for high school characteristics influences students’ choices in middle school. Bodere (2022)
looks at the effects of government subsidies in childcare on the entry, exit, and quality investment of private
pre-schools.
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discusses the direction of the next version of the paper.

2 Industry Background

In this section, I introduce the industry background of the Florida public education mar-
ket and the relevant institutional background related to the policy I focus on.

2.1 The Florida Public Education Market

Florida has one of the largest public school enrollments in both the traditional and charter
sectors across all states. It also has sound charter laws and relatively lenient entry screen-
ing (Singleton 2019), making it a state with one of the highest numbers of charter schools
and charter enrollment shares in the United States. Additionally, Floridian students can
choose any public school or charter school if they are not capacity-constrained through
a process known as “controlled open enrollment.”13 These unique features of the Florida
public education market amplify the potential impact of policies targeting the charter sec-
tor on the overall landscape of public education. Therefore, this makes Florida an ideal
state for evaluating the effects of charter school policies.

Regarding accountability, Florida has implemented a system that assesses and gives
performance scores to nearly all charter and TPSs annually. This system assigns account-
ability scores or letter grades to schools, ranging from A (highest) to F (lowest), based on
the same criteria applied to both charter and TPS. Notably, while the rating system aims
to consider students’ achievements and learning gains relative to their previous scores,
it still places more emphasis on absolute achievements. This emphasis is evident in the
criteria used to assess schools’ learning gains, where a school can receive a high score if
its students maintain their test scores at a sufficiently high level, regardless of their indi-
vidual progress. Among all schools in my sample in the 2018-2019 school year, the letter
grade distribution is approximately 34% A, 26% B, 32% C, and the remaining 8% are D, F,
or missing.

2.2 The New Statute and Charter Expansion Management

In July 2011, Florida enacted the High-Performing Charter School Statute, which remains
in effect today. The statute defines HP charter schools as those with three consecutive
years of exemplary performance,14 two As and no grades below B (“2A1B” rule hence-

13The capacity constraint does not seem to apply to many TPSs. As the Annual Five Year Plan indicated,
it is frequent to have TPSs enrolling more students than their enrollment capacity.

14The statute also requires healthy financial conditions. However, this is much easier to be satisfied
and almost never binds in giving designation compared to the performance requirement. For all charter
schools meeting the performance criteria, there are few cases in which schools fail to satisfy the financial
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forth),15 marking satisfactory student achievement and progress in standardized tests. An
HP charter school can keep its HP designation until receiving two C grades or worse. In
such cases, its HP designation can be revoked. However, such cases were rare in the sam-
ple.16 Among all charter schools in the sample, approximately 20% held HP designation
in 2012, and this percentage increased to 40% by 2019.

The most significant benefit granted by the statute was the authorization for HP char-
ter schools to expand their enrollment capacities without the approval of local school
districts. They can increase enrollment capacity once per school year, expand grade span
not already served within the range of K-12, or replicate their educational program in
any district in Florida.17 The statute legally prevents local school districts from rejecting
these expansion requests made by HP charter schools. On the other hand, districts had
the discretion to reject any expansion before the policy’s implementation, or after the pol-
icy if the non-HP charter schools propose such requests. Hence, the policy essentially
introduced a new incentive scheme that links the past performance of charter schools to
automatic eligibility for expansion.

I do not directly observe the enrollment capacity measured in student count as written
in charter contracts. Thus, I make the critical measurement assumption that the number
of classrooms for instruction in a charter school serves as a sufficient statistic for enroll-
ment capacity.18 Leasing is also notable as the primary ownership type of charter school
contract. Leasing is the primary form of ownership for charter schools, and the cost of
expanding capacity, i.e., adding classrooms for instruction, is typically associated with
leasing more space, renting relocatable classrooms, or renovating existing leased facilities
that are not currently utilized. Consequently, modifying capacity in this context can be
achieved quickly relative to constructing entirely new facilities.

Throughout this study, I refer to this event as “the policy” or “the statute.” Moreover,
I refer to the years before 2012 as the “pre-policy” period and the year 2012 and onward
as the “post-policy” period.

requirement or an incumbent HP school has been deprived of the designation for financial reasons.
15The criterion allows charter schools having two years of A level to be designated after 2017.
16In my sample, seven charter schools were de-designated from 2012 to 2019, and 179 charter schools

were designated and never de-designated. Since the de-designated charter schools account for less than 4%
of the designated charter schools, I code them as never designated throughout the paper.

17Additional benefits for individual HP charter schools include reduced frequency of financial statement
reporting to the sponsor, usually the local school district. They also have the opportunity to modify their
charter to extend its duration and enjoy a slight reduction in administrative fees.

18In this context, enrollment capacity refers to the maximum number of students a charter school can
enroll. It should not be confused with facility capacity, which represents the maximum number of students
the school’s physical facilities can accommodate safely. Naturally, enrollment capacity cannot exceed facil-
ity capacity, although the two quantities are correlated due to the costs associated with leasing or owning
additional facilities that remain unused.

8



3 Data and Sample

To conduct this research, I combined digitized government documents, publicly available
datasets, and those with limited public access that require requests for disclosure of infor-
mation. I collected enrollment in each grade and race, location, and activity status for all
public schools in Florida from the National Center of Education Statistics’ ELSi dataset,
which was merged into the Florida School Master File to obtain additional school char-
acteristics. The locations of schools were mapped to census tracts whose geocodes were
merged with the U.S. Census Bureau’s American Community Survey to acquire granu-
lar local demographic information for all schools. The school’s location is also valuable
for providing the distance students need to travel from each census tract to a particular
school and identifying which schools are closely competing with it. I collected schools’
performance information, the letter grades, detailed component scores used to produce
the letter grades, and standardized test scores from Florida School Grades Archives and
the Department of Education’s Bureau of K-12 Assessment.

To tailor the analysis to the policy context, I obtained characteristics such as capacity
(number of classrooms and buildings), leases, mission statement, education model, man-
agement company, staff details, and annual waitlist status of charter schools from Florida
charter schools’ annual Accountability Reports from the Florida Office of Independent
Education and Parental Choice. From the same source, I obtained the annual HP desig-
nation status (designated, de-designated). My variables include charter schools’ capacity,
performance, designation, local demographics, and neighboring schools. These can be
mapped to their enrollment volume and composition. Additionally, I obtained annual
teacher-subject level value-added estimates from a regression-based statistical model run
by the Florida Department of Education, Bureau of Accountability Reporting. I aver-
aged teacher-level value-added scores to the school level according to the teacher-school
linkage provided by the same dataset to measure the educational effort in improving a
school’s performance level, one of the crucial investment decisions in the model. Lastly,
I extended Singleton (2019)’s digitized independent audit data to include more years and
the coverage of charter schools than the original paper. The audit, filed by charter schools
annually to the Florida Auditor General, reports charter schools’ revenue, itemized ex-
penses, and assets. The instructional expenditure is employed in estimating the operating
cost function in my quantitative model.

This paper focuses on regular charter and TPSs that serve elementary (K-5) and mid-
dle grades (6-8) in Florida from 2007 to 2019.19 These schools encompass the majority of
K-8 public schools and their enrollment in Florida. Schools operating grades from kinder-

19Regular schools in my selection are all public schools excluding those that are laboratory, municipal,
virtual, providing special education, and those charter schools conversed from a TPS.
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garten to 8th yet running concurrently high school grades (the 9th to 12th grade) during
the sample period are excluded. This exclusion was necessary due to the distinct account-
ability requirements for high schools, which differ from those of elementary and middle
schools. By excluding these schools, the statistical analysis becomes easier, and the inter-
pretation of the schools’ performance scores is less convoluted. Thus, around 7% of the
total K-8 students are not considered during the sample period.

The ultimate sample under examination has 2,411 TPS and 630 charter schools, whose
observation counts are 29,333 and 4,483, respectively, at the school-year level. Comparing
the sample length (13 years), the median panel length of TPS and charter observations is
12.2 and 7.28 years, respectively.

4 Preliminary Evidence

In this section, I start by introducing TPS and charter schools in Florida, addressing the
heterogeneity between non-HP and HP charter schools. Further, I highlight two key find-
ings critical in analyzing the policy effects and the underlying mechanisms at work. First,
I provide suggestive evidence that the charter sector responds to the policy by expansion
and that students are reallocated across schools and sectors. Second, I identify the com-
petitive responses of TPSs using a difference-in-difference design enabled by the policy
shock. Finally, I motivate an alternative policy by pointing out that the existing policy
could advantage the charter schools already serving the high SES regions. For ease of
exposition, when describing a school year, I use “2019” to represent the “2018-19 school
year.”

4.1 Overview of Florida Traditional and Charter Sector

In the sample, charter enrollment accounts for an increasingly larger share of the pub-
lic K-8 enrollment over time: 3.3% in 2007, 6.5% in 2011, and 11.4% or around 210,000
students in 2019. The number of charter schools in my sample increases as well, from
216 in 2007, 290 in 2011, 376 in 2015, to 436 in 2019. After 2012, charter school exit rates
in my sample remained stable at around 3% to 5%, while the entry rates started to drop
from around 18% in 2011 to 5% in 2019.20 Typically, there are more charter schools in
districts with highly urbanized regions, and charter schools in these regions tend to be
densely distributed. In these large school districts, charter schools account for a higher
share of public enrollment (around 20%) and tend to be closer to other charter and TPSs

20Exit rate in year t is defined as the ratio between total exits in t and count of charter schools in t. The
entry rate is the ratio between the total entries in t and the count in t− 1. An exit is labeled as in year t if I
do not observe enrollment records since t+ 1. Moreover, an entry is labeled as in year t if I start to observe
a charter school’s enrollment record since t but do not observe the enrollment record before t.
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than elsewhere.
There exists considerable heterogeneity between the HP and non-HP charter schools.

In Table (1), I compare the mean and standard deviations (in parenthesis) of the non-HP
and the HP charter schools in 2015, 4 years after the enactment of the policy. In 2015,
among 376 charter schools in my sample, 31.6% were HP: 69 were designated in 2012 and
50 between 2013 and 2015. On average, compared to the non-HP ones, HP charter schools
have higher performance scores, capacity, and enrollment. They operate in locations with
higher population density, income, students’ test scores, and a more white or Hispanic
population. Consistent with the demographics of their locations, they serve more white
and Hispanic students on average while systemically fewer disadvantaged student pop-
ulations, including black students and those eligible for free or reduced-price lunch. The
type of population served by the HP and non-HP charter schools is also reflected in their
instructional cost. HP charter schools, on average, have less annual instructional expen-
diture per pupil than the non-HP. This gap may reflect that HP charter schools tend to
have greater efficiency in spending and that their students are less expensive to educate
(Singleton 2019).

Table 1. Summary Statistics of 2015 Charter Schools by HP Status

non-HP HP non-HP HP
I. School Characteristics III. Location Characteristics
Total Performance Score (%) 0.50 0.72 Population Density (1000/square mile) 1.29 1.53

(0.16) (0.12) (0.88) (1.00)

Enrollment 357.25 560.24 Household Income 62755 68443
(330.20) (349.40) (13625) (19158)

Number of Classroom 21.88 33.04 Mean Reading Score of TPSs -0.23 -0.04
(16.90) (19.41) (0.51) (0.53)

II. Student Composition Mean Math Score of TPSs -0.19 0.01
% of Free/Reduced Price Lunch 0.52 0.40 (0.49) (0.53)

(0.30) (0.27)
Number of TPSs 24.40 24.60

% of Hispanic 0.32 0.43 (15.39) (15.44)
(0.28) (0.32)

IV. Instructional Costs
% of Black 0.31 0.13 Instructional Cost Per Pupil 4110 3838

(0.31) (0.19) (2373) (978)

% of Whilte 0.31 0.37
(0.28) (0.30) Number of Charter Schools 257 119

Notes: Standard deviation in parentheses. Location characteristics represent an area within five miles of
a school’s Census tracts. Mean reading and math scores of TPSs represent averages of within grade and
year normalized exam performance of all grades the TPSs operate.

4.2 Charter Expansion, Student Reallocation, and Competition

In this subsection, I first analyze the direct effect of designation on charter schools’ capac-
ity and enrollment. I continue the analysis by showing suggestive evidence of the real-
location of students associated with the appearance of HP charter schools. I then show
something more causal: after the policy, TPSs with more HP charter school neighbors
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raise test scores.

HP Charter Expansion How does the charter sector react to the policy in terms of ca-
pacity? And to what extent does the reaction influence neighboring schools? To answer
these questions, I first investigate the relationship between designation timing and mea-
sures of school size and enrollment. To do this, I run a two-way fixed effect model as
shown in equation (1). I use it to examine the relationship between the within-school
variation in several outcomes, Yit, with the time-varying HP designation status, HPit, of
a charter school i in year t. The outcomes are the number of classrooms for instruction,
total enrollment (in logarithms), and the number of grades. The regressor HPit gives a
value of 1 if charter school i gets or has the HP designation maintained in year t and
0 otherwise. Since the policy started in 2012, charter schools are not designated before
2012, i.e., HPit = 0,∀i if t < 2012. The year fixed effect controls for factors common to all
charter schools, such as macroeconomic shocks. The main coefficient of interest is β. It
captures the difference in the within-school variation in outcomes between the pre- and
post-designation observations.

Yit = βHPit + FEi + FEt + ϵit. (1)

Table 2. Correlation of School Size and Designation

(1) (2) (3) (4) (5) (6)
#Classrooms log(enroll) #Grades #Classrooms #Classrooms #Classrooms

HP 1.841*** 0.090*** 0.029 1.828*** 2.692*** 1.362*
(0.559) (0.027) (0.126) (0.666) (0.901) (0.699)

#TPSs in 3 miles (normalized) 3.039
(3.570)

HP X #TPSs in 3 miles 1.025**
(0.520)

Locate in Higher Income Pop. 0.780
(0.995)

HP X Locate in Higher Income Pop. -1.245
(1.502)

Locate in Higher Black Pop. -0.440
(2.258)

HP X Locate in Higher Black Pop. 1.240
(1.266)

Average of Dependent Var. 23.76 5.58 5.87 23.76

Notes: Standard errors clustered by school district in parentheses. 4,080 charter school-year observations.
Each column corresponds to a specification. Columns (1) to (3) use different dependent variables, as the
column titles show. Columns (4) to (6) use the number of classrooms as the dependent variable. All
columns include school and year fixed effects. The number of TPSs in 3 miles is normalized across
charter schools within a year. Location characteristics in columns (5) and (6) represent an area within
three miles of a school’s Census tracts. *** p<0.01, ** p<0.05, * p<0.1

I show results in Table (2). From columns (1) to (3), after controlling for two-way fixed
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effects, the designation status positively correlates with the total number of classrooms
and enrollment while not significantly for the number of grades. Notably, charter schools
are relatively smaller than TPSs: the average number of classrooms used for instruction in
the charter sector steadily increased from 16 in 2007 to 25 in 2015 and 29 in 2019. The esti-
mates on the designation status, roughly 1.841 classrooms or 9.0% enrollment difference,
suggest a sizable within-school expansion between the average capacity between the pre-
and post-designation observations.21 In Appendix A.2, I use an alternative specification
to inspect the timing of the expansion after designation. I replace the regressor HPit with
a list of year-to-designation indicators in an event study regression model regarding HP
designation as the focal event for a charter school. The result shows that, on average,
more classrooms and enrollment are added after the first few years of designation, which
suggests that the expansion motives might be important behind the designation. 22

I explore the heterogeneity of the above relationship regarding classroom count by
interacting the HP designation with charter schools’ local schooling market conditions.
As the remaining columns in Table (2) show, the within-school addition of classrooms
between the pre- and post-designation is seen significantly more if a charter school is
surrounded with more TPSs within 3 miles, as shown in column (4). This suggests that
expansion decisions are made by charter schools based on the local competitive environ-
ment. However, this relationship has no significant differences among charter schools
with varying local demographic environments from the results in columns (5) and (6). In
column (5), I interact HP designation with the dummy of whether the mean household
income of a 3-mile-neighborhood of a charter school is higher than the median (across all
charter school-year observations). In column (6), I apply the above procedure similarly
using the proportion of the black population. None of the interaction effects in these tests
are significant.

These results suggest that HP designation might reduce the adjustment cost for HP
charter schools in expansion. Additionally, there exists heterogeneity in this relationship

21It is worth pointing out that none of these patterns causally support that the designation induces char-
ter schools to expand. The empirical difficulty is that the designation is an endogenous characteristic of
charter schools, and the designation rule applies equally to all charter schools. Therefore, one potential
future research could be comparing charter schools in Florida to states where the HP designation system
did not exist after 2012. This design would create variation in the policy exposure across different charter
schools. However, different states might have distinct education systems, so it is unclear which states are
more comparable to Florida before the HP policy. Therefore, to collect evidence that designation induces
expansion, I interviewed a few charter school principals and former Florida Department of Education offi-
cials. They confirmed that in their cases and most cases they encountered in negotiating expansion, charter
schools leveraged the designation to avoid expansion restrictions after the policy’s establishment.

22Note that the designation is endogenous to charter schools’ decisions. Therefore, the event study out-
come must be interpreted as capturing the variation in classroom counts influenced by the timing of the
designation status. Imposing strong assumptions to claim causality would detract from the research focus,
and using estimates of event study coefficients to represent dynamic treatment effect is misleading even
with strong assumptions, as Sun and Abraham (2021) pointed out.
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among charter schools facing different degrees of local market competition.

Student Reallocation To understand how charter schools’ reactions influence neighbor-
ing schools, I investigate the potential source of the increased enrollment in the HP char-
ter schools. Specifically, I inspect how enrollment changes as neighboring charter schools
get HP designation. To do so, I run regressions using a two-way fixed effect specifica-
tion in equation (2). I regress outcomes regarding the enrollment of TPS i in year t, Yit,
on the interaction between the exposure to the local HP charter schools, ExposureHPi,
and the time dummy that gives value one if t > 2011 and zero otherwise. To mea-
sure ExposureHPi, I use the number of charter schools within 5 miles of a TPS i such
that these charter schools would become HP in 2012. Therefore, the interaction term
ExposureHPi × Postt switches from zero to positive after the policy enactment and is
larger if TPS i faces more HP charter schools in 2012. Notably, this interaction term cap-
tures the cross-sectional variation in the existence of HP charter schools across TPSs and
the temporal variation from the implementation of the designation system. The parame-
ter of primary interest is β. It is interpretable as the semi-elasticity of TPS enrollment with
respect to an additional HP charter school after the designation system was established.
Furthermore, I scrutinize this relationship by considering an essential confounding fac-
tor: the competitive pressure from neighboring charter schools that are not necessarily
HP, denoted by ChartesNearbyit. I use the number of charter schools within 5 miles of
TPS i in year t to measure it. Therefore, by controlling for ChartesNearbyit, the varia-
tion to identify β comes from those TPSs which, although equally exposed to competition
from generic charter schools, have different numbers of HP charter schools in the neigh-
borhood.

Yit = βPostt × ExposureHPi + αChartesNearbyit + FEi + FEt + ϵit (2)

In column (1) of Table (3), I show a negative and significant correlation between the ex-
istence of HP charter schools shortly after the policy and TPSs’ enrollment (in logarithm).
It shows that an additional HP charter school is associated with 2.6% lower enrollment in
TPSs, conditional on the covariates. This pattern suggests the HP policy has a realloca-
tion effect across sectors, particularly between the TPSs and their neighboring HP charter
schools. Additionally, it is expected that the competition from generic charter schools
is also negatively correlated with TPS enrollment. However, the magnitude of its semi-
elasticity is smaller. When combining the two in one specification, as in column (3), I show
that the estimate on β barely changes compared to the result in column (1). This pattern
justifies that the exposure to more HP charter schools does not merely channel through
adding more (generic) charter schools to TPSs’ neighborhoods. It is more likely that these
HP charter schools can expand enrollment capacity in the future more easily and hence
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have the ability to absorb enrollment from nearby TPSs in the longer run. Furthermore,
I break down the effect of exposure to HP charter schools into two distance bands. Con-
trolling for all covariates used in column (3), I show in column (4) that the competition
brought by HP charter schools can similarly come from very close neighborhoods (0-3
miles) as well as farther ones (3-5 miles), as the coefficients on both bands are similar in
magnitude.

Table 3. Effects on Log Enrollment of Exposure to HP Charter Schools

Outcome: log(enroll)

(1) (2) (3) (4)

#HP Charter in 5 miles X After 2011 -0.026*** -0.026***
(0.002) (0.002)

#Charters in 5 Miles -0.003*** -0.000 -0.000
(0.001) (0.001) (0.001)

#HP Charter in 3 miles X After 2011 -0.024***
(0.003)

#HP Charter in 3-5 miles X After 2011 -0.027***
(0.002)

Average of Dependent Var. 6.50

Notes: Standard errors clustered by school district in parentheses. 29,070 TPS school-year observations.
All columns use the logarithm of enrollment as the dependent variable. Each column corresponds to
a specification. All columns include school and year fixed effects. The variables that have names #HP
Charter in certain distance bands represent the number of charter schools in 2011 that will become HP
charter schools in 2012. *** p<0.01, ** p<0.05, * p<0.1

The results above suggest a reallocation effect across traditional and charter sectors of
the new policy. Furthermore, I show instead in Table (4) the results of the tests on the rela-
tionship between the student composition of these TPSs and the existence of neighboring
HP charters. To do so, I run two groups of regressions using the same specification as
in equation (2) while altering the outcomes. In the first group, I regard the logarithms of
enrollment of certain types of students as the outcomes of focus. Columns (1) to (3) in Ta-
ble (4) report these results. They show that TPSs tend to have fewer black, Hispanic, and
lower-income students (as measured by those who need free and reduced-price lunch) as
HP charter schools become more prevalent in their neighborhood. This pattern is consis-
tent with the pattern that the enrollment in TPSs is negatively correlated with HP exis-
tence, as shown in Table (3). In the second group, I regard the enrollment ratio of certain
types of students as the outcome of focus. Columns (4) to (6) report these results. They
show that the ratio of Hispanic students is lower while the ratio of lower-income students
is higher in these TPSs as HP charter schools become more prevalent in the neighborhood.
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There is no significant effect on the ratio of black students.

Table 4. Effects on Composition of Students of Exposure to HP Charter Schools

log(enroll) Ratio of Student in a School

(1) (2) (3) (4) (5) (6)
Black Hispanic FR Lunch Black Hispanic FR Lunch

#HP Charter in 5 miles X After 2011 -0.031*** -0.066*** -0.019** 0.001 -0.003*** 0.006**
(0.006) (0.008) (0.010) (0.001) (0.001) (0.003)

#Charters in 5 Miles -0.009** -0.007*** -0.001 -0.000 0.000 0.001
(0.004) (0.002) (0.003) (0.000) (0.001) (0.001)

Average of Dependent Var. 4.60 4.80 5.93 .26 .28 .62

Notes: Standard errors clustered by school district in parentheses. 29,070 TPS school-year observations.
Columns (1) to (3) use the logarithm of enrollment of a certain type of student as the dependent variable.
Columns (4) to (6) use the ratio of a certain type of student in a school as the dependent variable. Each
column corresponds to a specification. All columns include school and year fixed effects. The variables
that have names #HP Charter in certain distance bands represent the number of charter schools in 2011
that will become HP charter schools in 2012. *** p<0.01, ** p<0.05, * p<0.1

These patterns in charter schools’ capacity and student reallocation suggest that the
charter sector could respond to the policy by expansion, which is consistent with the
policy reducing expansion costs for HP charter schools. Moreover, the HP charter schools
will likely impose an externality on the nearby TPSs via reallocation of enrollment. There-
fore, competitive spillovers might be a crucial mechanism in evaluating the existing or
other similar policies. Particularly, to what extent the competitive spillover can push
neighboring schools to improve test scores is a policy-relevant question. As the above
patterns suggest, this policy is associated with student composition change in schools,
which can result in test scores even if schools do not change educational inputs. This
imposes an empirical challenge in identifying the competitive spillover on test scores. In
what follows, I address this empirical challenge using a difference-in-difference design
facilitated by the policy and control for the student composition change.

Competitive Pressure Following the enactment of the High-performing Charter School
Statute, a school could face more competitive pressure as more of its neighboring charter
schools can expand with less regulatory constraint. Facing the pressure, schools might in-
crease their input into educating students, as reflected by test scores. To explore the poten-
tial competitive responses of schools influenced by the policy, I exploit the establishment
of the policy as a natural experiment. I focus on the TPS sector for this test: those TPSs
with more neighboring HP charter schools in 2012 right after the policy faced higher com-
petitive pressure than other TPSs with either no or fewer neighboring HP charter schools
in 2012. However, when investigating responses via test scores, they are likely influenced
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by the change in student composition. Therefore, the econometrician might pick up the
effect of reallocation instead of the increase of inputs of schools if naively regressing test
scores on the treatment. Guided by the above design, I develop a specification to explore
the causal effects of competitive pressure on TPSs’ increases of inputs.

Before introducing the specification, I formalize the notation and measure of the treat-
ment, outcomes, and other critical controls. Similarly defined in the above tests on stu-
dent reallocation, I define Treati as the exposure to nearby HP charter schools. In showing
the main results, I measure it by the number of charter schools within 5 miles of a TPS
i such that these charter schools would become HP in 2012. I use alternative measure-
ments of the exposure to nearby HP charter schools to test for robustness. The treatment
variable Postt × Treati switches to positive after the policy and is larger if school i have
more HP charter schools in the neighborhood. The outcomes under inspection, Aigkt, are
the normalized average scores in subject k of the student cohort in school i in year t of
grade g. Although I do not have student level test score, I use the matched cohort test
score to control for the contribution on test scores from student reallocation: For each
triple (i, t, g), it uniquely identifies a cohort of students and I observe both the average
score Aigkt of this cohort and its previous year’s average score, ALastY ear

igkt . Although stu-
dents in this cohort may not study in school i in the previous year, Florida Department
of Education manages to keep track of their scores and provide them to researchers. As I
show the results, I introduce the rest of the covariates, subsumed in Zigkt.23 Unfortunately,
the matched cohort test scores are no longer publicly available after 2014. Therefore, the
analysis of longer-term dynamic effects is not possible.

I estimate the following difference-in-difference regression (3) to reveal the causal
effect on schools’ change of inputs when facing more expanding neighboring charter
schools, i.e., the HP charter schools. I restrict my primary analysis to TPSs with a charter
school within five miles in 2011, which shrinks the full sample of TPSs by one-third. I
implement the tests on the full sample as a robustness check.

Aigkt︸︷︷︸
Cohort(i,g,t)

test score

= βPostt × Treati + ρ ALastY ear
igkt︸ ︷︷ ︸

Same(i,g,t)
Last year test score

+αPostt + ηTreati + γZigkt + ϵigkt (3)

In this specification, β is the parameter of interest. It captures the change in the differ-
ence between the average test scores of the TPSs facing more pressure from potentially-
HP charter schools and that of the TPSs facing less such pressure after the policy change

23The raw data contain the average test score of the cohort and the enrollment size of the cohort. The
normalization is across all schools within the grade-subject-year level, with the enrollment size being the
weight of each observation in the calculation. I normalize the current scores and the previous year scores
separately across schools in their corresponding years.
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(conditional on other controls). Under the assumption that trends in unobservable char-
acteristics that affect test scores are the same across TPSs with varying degrees of such
pressure, the estimates of β recover the causal effect of the pressure brought by charter
schools’ potential expansion.

The results of the tests are shown in Table (5). In column (1), the estimate of β suggests
that adding one nearby HP charter school within 5 miles increases test scores significantly
by 1.5% standard deviation (“σ” henceforth in this section). The causal effect is not only
significant but also larger than the existing findings in the studies on TPSs’ competitive
responses to choice programs.24 Although both the samples used to identify the competi-
tive response vary across the study, and the identification strategy is different, I speculate
that there may be several critical reasons why my estimate is higher than the ones in
the existing studies. First of all, in my context, the competitive pressure is generated by
HP charter schools. They are probably more attractive than normal choice programs dis-
cussed in the existing studies. Secondly, the expansion eligibility associated with the HP
designation strengthens the potential ability of the HP charter schools to attract students
from the neighboring TPSs. More importantly, the expansion eligibility signifies a poten-
tial threat in the future. As a neighboring TPS, it might feel the pressure of continuing to
lose future students. This finding potentially sheds light on the considerable potential of
using expansion eligibility to incentivize charter schools because it might also incentivize
the neighboring TPSs to increase effort.

Furthermore, the main treatment effect reduces to 0.80%σ and significant if I control
for more covariates such as fixed effects, match rate of the cohort,25 school student compo-
sitions, the count of charter schools within 5 miles, and pupil-teacher ratio. Additionally,
I separately run the tests on math and reading scores with the choice of covariates mim-
icking column (3) of Table (5). The results are shown in Table (B2). The effects on both
subjects are positive and significant, while the effect on reading is higher. In column (4)
of Table (5), I break down the treatment effect into distance bands while keeping key
controls. The result suggests a larger share of the competitive pressure imposed by HP
charter schools comes from those located within 3 miles. Specifically, adding one nearby

24For example, Figlio and Hart (2014) find adding one nearby private school increases test scores by only
0.21%σ in using Florida data ranging from 1998 to 2002, also using a difference-in-difference strategy. Figlio
et al. (2021), using Florida student-level data from the early 2000 to the late 2010s, show that increasing one
charter school within 5 miles increase reading scores by 0.36%σ to 0.98%σ depending on the instruments
they use.

25The match rate of the cohort measures the proportion of the students in cohort (i, t, g) that also exist in
the cohort (i, t − 1, g). Following the logic of the analysis, if this number is higher across schools, it means
that student reallocation is less intensive across schools and that the students contributing to the average
test score of cohort (i, t, g) are more alike with the students contributing to the average score of the cohort
(i, t−1, g). This also means the observations with a high match rate support the legitimacy of attributing the
causal effect on the test score increase to schools’ input increase. I formally test this idea in the robustness
check following the main specification.
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HP charter school within 3 miles after the policy increases TPSs’ test scores significantly
by 1.40%σ, as compared to 0.80%σ.

Table 5. TPSs’ Responses in Test Score to HP Threat

Outcome: Normalized Average Test Score

(1) (2) (3) (4)

#HP Charter in 5 miles X After 2011 0.015*** 0.008*** 0.008***
(0.002) (0.002) (0.002)

#Charters in 2011 in 5 Miles X After 2011 -0.005*** -0.004** -0.004**
(0.002) (0.002) (0.002)

#HP Charter in 3 miles X After 2011 0.014***
(0.003)

#HP Charter in 3-5 miles X After 2011 0.004
(0.003)

Charter Entry + School Demographics N Y Y Y
PT Ratio N N Y Y

Notes: Standard errors clustered by school district in parentheses. 55,310 TPS school-year observations.
All columns use the normalized average test score within a cohort (see the definition in the paper)
as the dependent variable. Each column corresponds to a specification. All columns include grade-
year, school-grade, subject-year, and subject-grade fixed effects. The variables that have names #HP
Charter in certain distance bands represent the number of charter schools in 2011 that will become HP
charter schools in 2012. Charter Entry represents the number of charter schools in 2011 within 5 miles
of the school. School demographics represent the school-year level percentages of the following types
of students: black, Hispanic, Asian, ELL, ESE, gifted, and those who need free-reduced price lunch. PT
ratio represents the pupil-teacher ratio at the school-year level. *** p<0.01, ** p<0.05, * p<0.1

To test whether there were significant pre-policy differences across TPSs with varying
HP charter exposure, I run an event-study specification, i.e., replacing the post-policy
indicators Postt with the list of l-year-to-2011 indicators. I include the most covariates
in column (3). Figure (A1) reports the event-study coefficient plot regarding 2011 as the
baseline year. I confirm there is no significant pre-policy differential trend of average
test score difference across treatment groups as defined. The results also show that the
post-policy dynamic effects built up and then alleviated from 2013 to 2014.

I test for the robustness of the findings and show the results in Table (B1) and (B2).
I first change the measurement of Treati and re-run the pre-post specification with the
most covariates. In the main specification aforementioned, I use the number of charter
schools within 5 miles of a TPS i such that they will become HP in 2012. I construct
alternative measures by slightly modifying the original one: 3 miles instead of 5 miles,
using indicators instead of count, and using the number of A charter schools in 2012 in-
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stead of the to-be-HP charter schools.26 The estimates of β across different measurement
choices are almost all positive and significant. Additionally, I test whether results vary if
I change samples. Firstly, I run the tests on the full TPS sample. This essentially increases
the number of observations in the control group because a TPS having no charter school
implies that it has no HP charter schools (within five miles in 2011). I design this test to
check whether including TPSs with little charter exposure in the control group could alter
the qualitative results. Because these TPSs might not be as comparable to those treated
with high HP charter presence as the ones with some charter schools existing in 2011.
However, the qualitative results do not change. Secondly, I exclude the observations of a
cohort if it has a lower than 80% or 90% match rate with its previous year’s scores. This
means the Department of Education can not track 20% of 10% of the cohort’s previous
year’s test scores. These tests examine whether using the data of cohorts with less attri-
bution due to reallocation across schools will change the results. The estimates from these
tests can be more credibly attributed to the change of inputs instead of the reallocation
of students. The results show that, although truncating observations at a 90% match rate
of the cohort causes considerable data loss, all the qualitative results remain the same. A
similar result is found when truncating using 80% as the cutoff. It should be noted that
this way of controlling students’ reallocation is not perfect due to data limitations. Ideally,
if student-level test score is available, one can largely eliminate the reallocation channel
by controlling an individual’s test score in the previous year. With all these robustness
checks, I conclude that TPSs increase their inputs into education, which raises their test
scores when they face the competitive pressure imposed by HP charter school neighbors.

4.3 Target Whom? Designation Advantages High SES Charter School

As shown in Table (1), HP charter schools are more prevalent in higher SES regions. This
raises a question: Would charter schools that serve low SES regions be able get designa-
tion by exerting higher value-added? Will this reduce the systematic performance differ-
ence observed in Table (1) across charter schools?

Figure (1) answers this question by showing that such differences might be systemat-
ically rooted in the designation criteria. It shows the density of specific indicators of stu-
dent compositions within a charter school among all the charter schools with value-added
that is higher than the median in 2015. This figure, therefore, illustrates the distribution
of student composition across the non-HP and HP charter schools among the charter
schools that have high value-added in improving student test scores. The two indica-
tors of student composition of a charter school are the percentage of students with free
or reduced-price lunches (left) and the percentage of black students (right), the two rel-

26Potentially, these A schools are candidates for HP charter schools in 2012, and some did become HP in
2012 or later.
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atively disadvantaged student groups. From Figure (1), among the higher-than-median
value-added charter schools, the non-HP tend to serve poor or black students, as the non-
HP density curve of these percentages of disadvantaged students is on the right of the
HP’s curve. The reason could be that the designation criterion, namely “2A1B,” relies
heavily on the level of academic performance of charter schools, less on the value-added.
This favors charter schools in high SES regions where their students come from more
educated families.

This raises a concern about whether the policy could lead to unequal allocation of
expansion eligibility, which might result in unequal access to high-quality charter school
seats across regions with different SES. Giving charter schools serving the low SES regions
with high value-added the opportunity to expand may help reduce the inequality of high-
quality charter programs across regions.

Figure 1. Density of Under-served Student Ratio Across Higher-than-median Value-
added Charter Schools in 2015

Note: Plots show the density of two student composition indicators across respectively HP (orange) and
non-HP (green) charter schools in 2015 that have a value-added above the median level. The left plot uses a
percentage of free and reduced-price lunch students in a school. The right plot uses the percentage of black
students in a school.

In the following sections, I formally investigate this alternative scheme targeting value-
added by building a quantitative model to simulate its effects. The model characterizes
the key mechanisms informed by the data patterns. One mechanism is the adjustments
of capacity and performance. I model them as the two critical decisions made by schools
and allow charter schools’ capacity adjustment to be influenced by their HP designation
status. The other is that competition across schools influences schools’ adjustment in per-
formance. I incorporate this mechanism in the model by explicitly modeling the pressure
a school faces in competing for students. Both mechanisms are crucial in influencing the
distribution of accessibility (i.e., charter and TPSs’ capacity) and school performance.
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5 Quantitative Model

In this section, I develop an empirical model that characterizes the dynamics of charter
and TPSs’ performance and capacity. I build the model based on the dynamic oligopoly
model developed by Ericson and Pakes (1995). I adapt it to capture the education market
and policy context of Florida and be tractable in computation.

In each period, schools endogenously expand capacity or improve their performance
(or both) to maximize their long-term objectives. They make decisions according to their
own capacity, performance level, other time-varying characteristics, and the schooling
market where they belong. Then, in the schooling market competition stage, students
choose schools based on the schools’ characteristics. Because adjustments of capacity and
performance are costly, schools consider a trade-off between the ongoing benefits of hav-
ing higher performance and larger capacity (to enroll more) and the one-time adjustment
costs involved in both decisions. In addition, charter schools can earn HP designation by
accumulating higher performance and thus reduce the cost of adjusting capacity. Under
this setting, the model connects the time-varying operating environment with schools’
two key decisions and also links them to the policy (via the modeling of HP designation)
and the competitive environment schools face. Therefore, the model allows schools to re-
act endogenously to the change of adjustment cost and competitive environment brought
by the HP policy, as informed by the preliminary data patterns.

5.1 Environment

The model describes a regional schooling market. Time is discrete, unbounded, and mea-
sured in school years, denoted by t ∈ {1, 2, 3, ...}. A school is denoted by j. The number
of the operating schools, J , is assumed to be constant over time and schools in the market
do not expect entry, exit, or change in ownership. I also use J to denote the set of schools.
Schools are heterogeneous concerning their own state xjt (to be discussed). The market
situation state that j faces, njt, is a function of all of the schools’ state, i.e., (xjt)j=1∼J . It
summarizes how school j’s utility in period t is influenced by other potentially compet-
ing schools’ and its own state. The information set of school j at period t is denoted by
sjt:

sjt = (xjt, njt).

I introduce the functional form used to construct njt in greater details in the demand
subsection. Thus, the market is fully characterized by all schools’ information sets: st =
(xjt, njt)j=1∼J .

The sequence of events within a period is shown in Figure (2). Firstly, school j learns
about sjt at the beginning of a period. Secondly, students choose school j according to
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sjt, resulting in enrollment Ejt. Thirdly, school j adjusts its own states by expanding or
exerting effort (or both) that incurs adjustment costs Γjt. Fourthly, the state sjt evolves to
its new level sjt+1. Particularly, xjt evolves to xjt+1 according to j’s adjustment decisions
and exogenous state transition rules, and the market situation state njt evolves to njt+1

according to all j’s decisions.

Figure 2. Timing of the Events in the Model

t 1

sjt

State & Utility

Events
2

Ejt

Students choose

3

Γjt

j adjusts
4

sjt → sjt+1

t+ 1

sjt+1

5.2 Demand and the Form of Market Situation State njt

In this subsection, I introduce the demand model and the construction of the market
situation state njt.

Allowing students to differ according to their residential location is crucial in charac-
terizing school choice (Neilson 2021; Agarwal and Somaini 2018; Allende 2019; Dinerstein
et al. 2022; Gilraine et al. 2023). Given this, I build my demand model based on the spatial
demand literature (Holmes 2011; Zheng 2016; Ellickson et al. 2020).

The market is endowed with a set of locations l. Let L denote the set of all locations. To
be consistent with the empirical implementation, I call a location a census tract. I assume
the existence of a representative student in each tract l. Therefore, I index students by
their location l. The student population size of tract l in period t is denoted as mlt.

The student i who lives in l can choose schools j = 0, 1, 2, 3..., J , where j = 0 indicates
the option of homeschooling or attending private schools. According to Florida’s open
enrollment policy, a student can enroll in any charter or TPS in Florida. Therefore, I model
students’ choice set to be J . The student needs to travel tract-school specific distance,
distjl, to a school j. The geography of the market is assumed to be fixed over time, and
hence, all distances are time-invariant.

The utility for the student i residing in l is:

wijlt = δ(xjt;α) + λdistjl + ζijlt.

The first term, δ(xjt;α), is the mean utility a student gets from enrolling in school j in
period t, parametrized by α. As the name suggests, the mean utility is common to all
students. The second term, λdistjl, captures students’ disutility from traveling. The third
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term, ζjti, is an idiosyncratic taste shock. I assume the ζjti is distributed as i.i.d. Type-I
Extreme Value. The outside option is assumed to have zero mean utility: δ(x0t) = 0. No-
tably, I allow capacity, a critical component in xjt, to influence j’s enrollment. I explain the
functional form of the mean utility δ(.) and the contents in xjt relevant for characterizing
schooling demand in the estimation section.

Given the assumption imposed on ζjti, the choice probability of students living in l

choosing j is:
exp(δ(xjt;α) + λdistjl)

1 +
∑

j′∈J exp(δ(xj′t;α) + λdistj′l)
.

Therefore, the enrollment of school j in period t, Ejt, is obtained by adding all the students
that j enrolls across all tracts:

Ejt =
∑
l∈L

mlt ·
exp(δ(xjt;α) + λdistjl)

1 +
∑

j′∈J exp(δ(xj′t;α) + λdistj′l)
. (4)

One can alternatively write equation (4) as:

Ejt = exp(δ(xjt;α)) ·
∑
l∈L

mlt ·
exp(λdistjl)

1 +
∑

j′∈J exp(δ(xj′t;α) + λdistj′l)
.

I define the market situation state variable njt as:

njt =
∑
l∈L

mlt ·
exp(λdistjl)

1 +
∑

j′∈J exp(δ(xj′t;α) + λdistj′l)
.

Under this definition, enrollment is

Ejt = exp(δ(xjt;α)) · njt. (5)

In my empirical context, there are potentially many schools that are heterogeneous
in their xjt, such as performance and capacity. Without further assumptions, the current
setting implies the state space for school j is the Cartesian product of the state space of
all schools’ own state x. Therefore, the state space for each school expands rapidly in J .
This “curse of dimensionality” imposes a challenge in computing the MPNE, i.e., Markov
Perfect Nash Equilibrium, in this model. Therefore, I make a simplifying assumption on
j’s state space and define an alternative equilibrium concept (to be discussed) to facilitate
the computation of the model. This assumption is stated as follows.

Assumption “Inclusiveness”. Each school’s belief in its demand is represented by equation (5)
and is summarized by states characterizing schools’ own state x and a uni-dimensional state n

characterizing the market situation faced by each school.

This assumption reduces the dimensionality of the state space for a school. It also
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implies that schools have limited cognitive ability to track all their competitors’ states
over time to predict their future enrollment. If J is large, this is a reasonable assumption.
This setting still preserves schools’ competitive responses by allowing their decisions to
depend on their beliefs over the time-varying market situation via the summary statistics,
n, that summarizes the relative “attractiveness” of other competing schools.27.

5.3 Schools’ Dynamic Programming Problems

5.3.1 State Space

Schools are heterogeneous in many dimensions. In each period t, their own states consist
of the following:

xjt = (oj, qjt, kjt, hpjt, djt, ξjt, ϵjt).

Except for the ϵjt, all state variables in xjt are observable to the econometrician. The ϵjt are
distributed i.i.d., across schools and periods. They capture the unobserved heterogeneity
of schools’ adjustment costs and hence allow for gaps between the model-predicted and
observed decisions of schools. I discuss the economic interpretation of ϵjt in greater detail,
along with introducing schools’ adjustment process.

The time-invariant state o denotes the school type, either charter or TPS. Since the
government regulates TPSs and charter schools differently, their decision-makers have
different objectives and tools to influence schools’ development. Therefore, by breaking
into two types of schools, the model allows school types to have different constraints
on their state space, action space, and objectives. Accordingly, all the parameters in the
following are allowed to be different by type and, hence, are estimated separately for each
type.

The state variables q, performance, and k, capacity, influence the school’s enrollment,
a component of both types of schools’ objectives. The state variable hp, HP designation
status, influences the adjustment cost of charter schools’ capacity. The states q, k, and hp

are the core endogenous states directly influenced by a school’s decisions.
The state variable d characterizes the local operating environment schools face, such

as racial composition and household income level. This state variable allows charter
schools’ operating costs to vary by demographics, as in Singleton (2019). Since I do not
model schools’ entry and exit decisions, d is assumed to be exogenous and independent
of schools’ decisions.

Finally, the one-dimensional state variable ξ represents all other aspects of school qual-
ity that can shift students’ demands. It will be recovered from demand estimates and

27This modeling device and the formula generated from a demand model are shared by other industrial
organization research using a dynamic model (Hendel and Nevo 2006; Gowrisankaran and Rysman 2012)
and static models used in the economics of education setting (Sánchez 2023; Dinerstein et al. 2022)
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hence is assumed to be observable to the econometrician.

5.3.2 School’s Flow Utility and Adjustment Decisions

Schools make two adjustment decisions in each period to maximize expected utility over
time. The two decisions are educational effort, v, and capacity expansion e. Particularly,
the variable v represents schools’ decisions on value-added. It is a scalar summarizing
all the schools’ inputs that are invested in improving students’ test scores. It can include
spending on the professional development of teachers, teacher coaches, better leadership,
and administrative support. The decision et represents the school’s extra capacity to ex-
pand (or shrink) in period t.

Charter schools are allowed to make both decisions, while TPSs in this model are
assumed to have a fixed capacity, i.e., ejt = 0,∀t, and can only decide on value-added. I
make this assumption because TPSs do not change the enrollment capacity frequently or
by a large proportion over time in my data.28 Decisions of adjustment are defined as the
mappings from states to actions:

v : (sjt) → vjt

e : (sjt) → ejt.

These adjustments are costly and jointly influence all the endogenous variables.
I assume charter schools operate as for-profit organizations.29 Their flow utility ujt has

28I do not have complete and high-quality capacity data for TPS. However, I manage to get long panels of
TPSs’ capacity in Lee and Palm Beach counties, measured by student station. I find that most of the change
in capacity is either zero or not empirically relevant in magnitude. Take TPSs from the Palm Beach County
as an example. From 2011 to 2020, over the 2659 observations of annual capacity change compared to the
previous year, 85% show zero change, and 5% shows less than 1% change (compared to the previous year’s
capacity). A similar qualitative conclusion can be found in inspecting Lee County’s panels. Potentially, one
can digitize the Annual Five Year Plan document published by the local school districts to obtain all TPSs’
capacity. However, the document does not provide the unique school ID number. Moreover, it does not use
the same name as the school that appeared in NCES or Florida Master File data, making the exact merge
across datasets almost impossible. Based on the data I can digitize and merge, I conclude that the facility in
TPSs does not frequently change over time. In the empirical implementation, I impute their capacity using
their in-sample largest enrollment divided by a constant to measure their capacity.

29Although all charter schools in Florida operate as non-profit organizations, around 40% to 50% of char-
ter enrollment is in charter schools that sign contracts with private management companies to operate the
daily business in my sample from 2012 to 2019. The pressure of making a profit may come from payments
to these private companies. I label these charter schools as for-profit, as in the definitions used by Singleton
(2017) and Singleton (2019). Singleton (2019) also defines two types of charter schools: the “no-excuses” and
the “other” charter schools. The “no-excuses” charter schools follow an educational philosophy emphasiz-
ing high expectations, comportment, and traditional math and reading skills. The rest are in the “other”
category. Using his definition of the labels, I discover that in my sample, the “no-excuses” and the “other”
charter schools account for around 15% and 35% charter enrollment in recent years. According to Singleton
(2019), no-excuses charter schools are considerably less sensitive to variable costs and large enrollment than
the other two types of charter schools. Although the no-excuses charter schools have different objectives,
given their relatively lower market share, I focus on the other two types of charter schools that operate in
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the following form:

ujt = rE(sjt)−Ψ(E(sjt), sjt)− Γ(vjt, ejt, hpjt, ϵjt).

Enrollment E(sjt) is a function of the state variables. It summarizes the demand side
of the schooling market. rE(sjt) represents the total revenue charter schools get from
enrolling E(sjt) students. In practice, charter schools get revenue from the government
according to a per-enrollment reimbursement rate r, which is known to the econome-
trician. The function Ψ(.) captures the variable cost of maintaining daily operation and
instruction, e.g., teachers’ salary, rent, staff compensation, and maintenance. The func-
tional forms of E(.) and Ψ(.) will be described in estimation. The function Γ(.) represents
the adjustment costs charter schools pay to change future capacity and performance.

As for TPSs, I assume they operate as non-profit organizations. Their flow utility
is a weighted sum of enrollment, performance, and the adjustment cost of improving
performance:

ujt = rEE(sjt) + rqqjt − Γ(vjt, ϵjt).

In this specification, rE and rq indicate the relative weight of enrollment E(sjt) and perfor-
mance qjt. They are enumerated in terms of the TPSs’ valuation of adjustment cost. This
reflects the principal’s objective in maintaining enrollment and performance: if the school
constantly performs badly or not enough students attend the school, its principal can be
fired. I assume the econometrician knows rE and rq because these two parameters can not
be separately identified with the adjustment cost using the TPSs’ value-added decisions.
For example, low adjustment cost of exerting value-added or prioritizing in getting high
performance can both generate high value-added decisions. Therefore, I calibrate both
parameters according to Mehta’s (2017) structural estimates with slight modifications.

The most critical component in both types of schools’ flow utility is their adjustment
costs. For charter schools, I model their adjustment cost function as:

Γ(vjt, ejt, hpjt, ϵjt) = γvvjt + 1{ejt≥0} ·

Fixed Costs︷︸︸︷
γ1 +

Variable Costs︷ ︸︸ ︷
γ3 · ejt + γ4 ·

↑
HP effect

ejt · hpjt


+ 1{ejt<0}γ5 · ejt. (6)

The γv captures the per-unit cost of value-added. The per-unit cost of capacity change is
captured by γ3. It includes spending on purchasing furniture, hiring designers, and build-
ing extra classrooms. I also consider fixed costs of increasing capacity as indicated by γ1.

Florida. Furthermore, I do not distinguish the “other” type of charter schools from the for-profit ones in
their objectives because the heterogeneity of charter schools is not the paper’s focus. In future versions of
the paper, I can allow these two types of charter schools to have distinct model primitives.
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Introducing fixed costs rationalizes the lumpiness in capacity adjustment, as observed in
the data. Furthermore, γ1 also captures the reality that capacity adjustment is associated
with hiring lawyers to negotiate and re-contract with the government, regardless of the
size of the expansion. Furthermore, the HP designation is modeled as influencing both
fixed and variable expansion costs for designated charter schools via γ4. Finally, I allow
the unobserved heterogeneity ϵjt to influence charter schools’ adjustment cost of expan-
sion. This heterogeneity exists because charter schools have different modes of expanding
capacity, which can involve different costs. For example, charter schools could renovate
five classrooms within the existing facilities or add a floor to their existing building with
five classrooms. The former is usually less costly. In the data, I do not observe the mode
of expansion. Therefore, I model the expansion decisions to depend on the unobserved
heterogeneity to rationalize the discrepancy between the policy function estimated and
charter schools’ expansion data. Therefore, for both γ1 and γ3, I assume they are drawn
from the same normal distributions across all charter schools in each period.

Since I do not allow TPSs to alter their capacity in the model, the adjustment cost
functions for TPSs are simply:

Γ(vjt) = γvvjt (7)

5.3.3 State Transitions of Individual States

Capacity evolves in a deterministic way. Future capacity is a sum of current capacity and
expansion

kjt+1 = kjt + ejt.

Performance evolves according to the current performance and the value-added into
the next period performance, captured by the function τ(.):

qjt+1 = τ(vjt, qjt).

In my application, this corresponds to the following production process of academic per-
formance: Students attend school and perform in standardized tests, earning the school
a rating of qjt in period t. The school decides to put in vjt amount of value-added to pro-
mote students’ academic performance in t + 1, resulting in schools earning qjt+1. This
transition rule applies to both charter and TPSs.

Designation of charter schools evolves as a function of period t’s performance level
and the HP status, namely:

hpjt+1 = η(qjt, hpjt).

I regard hpjt+1 as a passively evolving endogenous variable unaffected by decisions di-
rectly. This assumption reflects the nature of the statute that designation is not dependent
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on the value-added directly. I also abstract away from the actual policy, which requires
three years of satisfactory performance, by assuming that the determination of future
designation depends on current performance to avoid unnecessary complications. Addi-
tionally, as shown by the data, de-designation happens extremely infrequently. Therefore,
I set hpjt+1 = 1 if hpjt = 1.

For the rest of the components in a school’s own states, namely djt and ξjt, I assume
they all independently follow AR(1) processes.

State Transitions of Market States Given the “Inclusiveness” assumption, I constrain
how schools form beliefs about the njt’s evolution, denoted as ν(.), in the following as-
sumption.

Assumption “Consistent Belief”. Each school forms a rational expectation that ν(.) is an
autoregressive process with one lag, i.e., AR(1), and its belief is consistent with how the market
would evolve when the school itself and its competitors make optimal dynamic decisions given
their beliefs ν(.).

This assumption requires that schools have no strategic consideration about njt, i.e.,
they believe their own decisions do not directly change njt. And their beliefs on njt

have to be consistent with how the market evolves. This assumption is established to
allow schools’ beliefs about the competitive environment to change under the alternative
supply-side policy. Think, for example, a simulation exercise in which the econometri-
cian expects to test the value-added response by TPSs under a counterfactual policy. The
policy does not allow the HP designation system to exist and imposes more constraints
on the extent to which charter schools can expand. Even though the traditional sector is
not directly targeted, they should predict a less “aggressive” expansion of neighboring
charter schools under this counterfactual environment. The “Consistent Belief” assump-
tion allows schools to alter beliefs in a way consistent with how the market evolves. This
assumption requires jointly considering schools’ optimal decisions according to the dy-
namic programming problems and their beliefs about the evolution of the market envi-
ronment. This implies an iterative algorithm to find a fixed point of ν(.) that satisfies the
“Consistent Belief” assumption. More computation details are explained in section 8.

Based on the assumptions “Inclusiveness” and “Consistent Belief”, I introduce the
dynamic programming problems faced by both types of schools and the equilibrium con-
cept.

Schools’ Dynamic Programming Problem and Equilibrium With all model compo-
nents specified, the maximization problem faced by a charter school is summarized by
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(8). I denote β as the discount factor. I omit subscript j.

V (st) = max
vt,et

rE(st)−Ψ(E(st), st)− Γ(vt, et, st) + βEV (st+1|st)

s.t. qt+1 = τ(vt, qt), kt+1 = kt + et, prob(hpt+1|qt, hpt) = η(qt, hpt),

dt, nt, ξt ∼ AR(1), nt transition satisfies Consistent Belief

ϵt ∼ i.i.d. (8)

The maximization problem faced by a TPS is summarized by (9).

V (st) = max
vt

rEE(st) + rqqt − Γ(vt, st)+βEV (st+1|st)

s.t. qt+1 = τ(vt, qt), kt+1 = k̄, hpt+1 = 0,

dt, nt, ξt ∼ AR(1), nt transition satisfies Consistent Belief

ϵt ∼ i.i.d. (9)

I define the equilibrium below to close the model. To facilitate exposition, first, denote
z as a school’s strategy, i.e., z = (v(.), e(.)) ∈ Z and define the expected value function
implied by each school’s own (z̃) and other schools’ strategy (z) as

V̄z̃,z(s) = EϵVz̃,z(s) = Eϵ

[
max
z̃(s)

π(s)− Γ(s, z̃(s)) + βEz̃,zV (s′|s)
]
.

Definition. An equilibrium of a market is characterized by a strategy z such that:

1. (Optimality) z satisfies the optimality condition. That is, for every state s ∈ S, for every
school,

sup
z̃∈Z

V̄z̃,z(s) = V̄z,z(s).

2. (Consistent Belief) Each school forms rational expectation on the perceived transition, ν(.),
of market situation state n, s.t. ν(.) is consistent with how the market evolves based on this
belief. That is,

ν̃z(.) = ν(.),

where ν̃z(.) is the transition of n when all schools play strategy z.

This equilibrium concept and the implied iterative algorithm used to solve the model
are similar to the Moment-based Markov Equilibrium (Ifrach and Weintraub 2017) in
which agents’ strategies are assumed to depend on summary statistics of the distribution
of other agents’ states. The Moment-based Markov Equilibrium, along with other equi-
librium concepts following the work by Weintraub et al. (2008), are attempts to address
the computation burden created by using MPNE as the solution concept of a dynamic
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game.

5.4 Analysis of Mechanisms

The model captures two key mechanisms that govern schools’ decisions: incentives in
adjustment and competition.

Firstly, I explicitly model the adjustment costs to influence schools’ intertemporal de-
cisions. Adjustments are costly at the moment but can benefit the school by increasing
future enrollment. Furthermore, the model introduces the HP designation hp in the ad-
justment cost function of charter schools. This enables the evaluation of the direct policy
effect, which can be simulated by comparing outcomes under the existing scheme to the
scenario in which the existing scheme is eliminated.

Secondly, because the market situation states n enters the demand function, schools’
decisions can respond to competitive pressure from other schools. These responses can
be further influenced in the future according to what schools believe about the evolution
of the market situation. More importantly, incorporating competitive responses is crucial
in quantifying the effects of large-scale counterfactual policies, such as deregulating all
charter schools. Such policies will likely change schools’ beliefs about the evolution of the
market situation they face. To properly characterize how schools change a belief about
the evolution of their market situation, the “Consistent Belief” assumption is critical.

Finally, the model allows for decisions of both charter and TPSs to be responsive to
demographic heterogeneity d. Particularly, Ψ(.) can depend on local demographics. This
heterogeneity is important for counterfactual policy evaluation. As is also shown in the
data, educating students with low SES can involve higher instructional expenditure per
enrollment. Modeling the dependence on local conditions can help evaluate the hetero-
geneous responses of different schools that operate in various demographic conditions
across different regions. Specifically, to evaluate whether an alternative policy that gives
more expansion eligibility to charter schools in low SES regions requires scrutiny of the
estimates of the operating cost function. Such a policy may not trigger charter schools
to expand capacity as expected if the charter schools in these regions may not have the
incentive to expand due to high operation costs.

6 Empirical Strategy

This section first introduces the two-step estimation strategy. Then, it presents measure-
ments, estimation samples, and empirical specifications, with a particular focus on the
demand. And then, it continues to introduce the identification of the adjustment cost
function.
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6.1 Overview of Estimation Strategy

I calibrate the reimbursement rate r and the utility weights for TPSs (rE, rq) directly from
Florida laws and Mehta (2017), respectively. For charter schools, the per-enrollment re-
imbursement rate r is set to be $8000 a year.30 For TPSs, I calibrate the utility weights
according to Mehta (2017)’s structural estimates. In the paper, enrollment is set to be
the numéraire, and his estimates show that TPSs put weight 19.634 on their average test
scores. Therefore, I set rq = 20 ∗ rE , approximating Mehta (2017)’s results. I further set
rE = r. This is an innocuous assumption as long as the ratio between rq and rE is rea-
sonable. Setting rE = r not only reflects that charter and TPSs are reimbursed under the
same formula,31 but it also makes the estimates in the adjustment costs for value-added
between charter and TPSs comparable. The discount rate β is set to be 0.9.

I use the simulation-based algorithm developed by Bajari et al. (2007), henceforth re-
ferred to as BBL, to estimate the structural parameters. These include the enrollment
function E(.), operating cost function Ψ(.), adjustment cost function Γ(.), and all the tran-
sition functions. BBL propose a two-step procedure that avoids directly solving the policy
functions of the agents in conducting estimation.

In the first step, I use appropriate functional forms to estimate the demand, operating
cost, policy functions, and transition functions. In this step, I characterize the agents’
decisions and flow utility as functions of the state variables. In the second step, I use the
estimated policy functions in the first stage, denoted as v̂(.) and ê(.), and their perturbed
versions ṽ(.) and ẽ(.) to compute the expected discounted sum of the flow utility for large
enough periods T . The estimator will search for the parameter Γ̂ of the adjustment cost
function Γ(.) that minimizes the profitable deviations with perturbed policy functions
(ṽj(.), ẽj(.)) from the optimal policies estimated in the first stage:

Γ̂ = argmin
∑
j

∑
i

min{0, V̄ (si0; v̂(.), ê(.); Γ̂)− V̄ (si0; ṽj(.), ẽj(.); Γ̂)}2, (10)

where

V̄ (si0; v(.), e(.), Γ̂) =
1

NS

∑
ns

T∑
t=0

βtu(sit; Γ̂) s.t. v(.) and e(.) governs the evolution of sit.

30I choose this per-enrollment reimbursement rate to approximate $8143, a number provided by the latest
state budget release (for a source, see Florida Charter School Alliance’s report). Note that the pre-enrollment
reimbursement rate tends to increase evenly every year. Therefore, the actual rates during my sample
period might be below this number.

31According to Florida law, charter schools are funded through the Florida Education Finance Program
in the same way as all other public schools in the school district. The charter school receives operating
funds from the Florida Education Finance Program (FEFP) based on the number of full-time (FTE) students
enrolled. Notably, a recent report “Charter School Funding: Inequity Surges in the Cities” finds charter
schools receive less reimbursement compared to TPSs in states that apply this equal-reimbursement law.
Therefore, accounting for this might raise the estimate for TPSs’ adjustment cost of value added.
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Here, i denotes a specific initial state randomly picked, and j indexes a perturbed policy
function that slightly and randomly changes the actions predicted by v̂(.) and ê(.). Note
that an ns indexes a simulation and signifies that the goal is to get the expected discounted
sum. I estimate charter and TPSs separately, following the same procedure.

6.2 Measurement

In Table (B3), I integrate the measurement of relevant variables in the model and their
coverage of years and schools. Unless specified otherwise, all measures are available
throughout the sample period. In the model, a period corresponds to a school year,
where the label for the year follows a format where the 2013-2014 school year is labeled
as t = 2014. Each school in the dataset is identified by a unique school ID. I highlight
several measurement assumptions below. I calculate the average teacher value-added
score within a school to measure educational effort. I consider the accountability score
in the previous year of t as the performance state variable in t. This choice is motivated
by the fact that schools and students are unaware of the schools’ accountability scores
for the upcoming school year during the recruitment season of the previous year. Hence,
the accountability score in the previous year is a more suitable measure variable for the
contemporaneous performance state.32 As for the capacity measure of TPSs, although I
do not have the number of classrooms directly, I impute a TPS’s capacity using the largest
enrollment observed in a school divided by 22. Because TPSs are not often capacity-
constrained and are subject to a regulated middle school class size of 22 students per
class. For all information from the American Community Survey, I particularly use its
5-year Data Profile, where the middle year of the 5-year data serves as the year label for a
certain variable. For the measurement of all variables related to the demand estimation, I
leave them as I introduce the demand estimation.

6.3 Estimation Sample

The sample used for structural estimation consists of a selected set of charter and TPSs.
First, for both types of schools, I exclude those that only run grades from K-2 for most
of the sample period, those with a short sample length, or schools with a small average
enrollment per grade. These exclusions are necessary because the excluded schools may
have objectives that differ significantly from the rest. Moreover, they are systematically
more likely to have missing variables. For example, schools that constantly run K-2 do not

32Here is an example: The enrollment of t = 2012, i.e., the school year 2011-2012, is determined in the
recruitment season of 2011, in spring. At that time, students did not know the schools’ accountability
scores for the upcoming 2011-2012 school year starting 2011 in the summer. Therefore, a more appropriate
measure for the state variable of performance level is the accountability score 2011, which has been made
public to schools and students since the start of the 2010-2011 school year.
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participate in standardized tests and hence do not have a reliable source of performance
evaluation.

When estimating the policy functions of charter schools, I only include observations
from charter schools that have been operational for more than three years. This selection
criterion aligns with the model’s focus on characterizing the relatively mature operation
of charter schools after their entry. Additionally, the expansion in a charter school’s early
life cycle is predetermined and negotiated prior to entry, independent of post-entry fac-
tors such as designation and performance level. Therefore, including observations from
this period would not be appropriate.

When it comes to TPSs, I select the set of schools used to show the main results of
the difference-in-difference analysis. That is, all the TPSs that had no charter schools
within 5 miles in 2011 are excluded from the structural estimation. Since the model allows
both types of schools to respond to market situations endogenously affected by the policy
change, for TPSs with no charter competitors in a reasonably large neighborhood, it is less
suitable to characterize their behavior in such a competitive environment in the model.

Finally, I choose post-policy observations to estimate the structural model.33 As the
model requires, all schools are assumed to know the existence of the HP designation
system, and their belief about its existence remains unchanged. Therefore, the post-policy
period is more suitable for estimating the model, particularly because the operation of
the designation system is commonly known during this period and undergoes minimal
changes.

In the end, around ten thousand charter and TPS observations exist in the structural
estimation from 28 districts.

6.4 Empirical Specification

In this subsection, I introduce the definition of a market and the empirical specifications
used in the estimation of the offline functions. These include the demand, operating cost,
transition, and policy functions.

Market Definition and Fundamentals. I regard a school district as a market in the
model. Florida has 67 school districts, whose sizes are similar to U.S. counties. I as-
sume students do not travel across districts to choose schools. I regard the total number
of public and private enrollment as a district-year’s market size and define schools’ share

33There are exceptions in which I also include pre-policy data in estimation to get more statistical power
in implementation. For example, I estimate the operating cost of charter schools using all data without
conditioning on the HP status. I essentially assume the operating cost does not depend on the belief about
the designation system.
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accordingly.34 I regard each geography unit, i.e., l, in the model as a census tract. The
distance between a census tract centroid and a school hence measures the travel distance
to the school. 35 Accordingly, ml, the student population size of a census tract l is then
measured by the total number of K-8 students. Since the district-year market size and the
census tract demand size come from different data sources, I adopt Ferreyra and Kosenok
(2018)’s method to moderate the student population size of a tract.36 Essentially, I impose
that the sum of the tract demand size of all tracts in a district of a year is equal to the
market size constructed by adding up all the charter, traditional, and private school en-
rollment of the district in that year.

Ideally, one would solve out for the equilibrium of every district. This implies that
each district should have its district-specific offline functions. The data limit such an ap-
proach. Particularly in districts with not a lot of charter schools e.g., less than 10, it is
impractical to estimate their policy functions due to lack of statistical power. Therefore,
in what follows, except for the transition rule ν(.) of the market situation state n, I es-
timate all other offline functions, including the demand, by pooling observations from
all chosen districts and years. The motivation and empirical practice of estimating the
district-specific AR(1) processes for each district is explained in the section on estimation
results.

Demand Function E(.) and Demand-based Measures ξ and n. The main empirical
challenge I need to tackle in the demand estimation is the existence of capacity-constrained
charter schools in the market. One might underestimate students’ preference over schools’
performance if the capacity-constrained ones tend to be preferred. Notably, the existing
literature on the industrial organization of the U.S. education market (Hastine et al. 2009;
Ferreyra and Kosenok 2018; Singleton 2019; Dinerstein and Smith 2021) has not treated
such capacity constraints explicitly in their demand models. To account for capacity con-
straints, I model students’ preferences for schools depending on class size. This treatment
helps explain the low enrollment in constrained schools as students dislike larger class

34Due to the sample selection for the empirical implementation, a district’s “inside” option, i.e., the
charter and TPS enrollment, is from the selected set of schools inside of the districts. When calculat-
ing a district’s “outside” option, i.e., private enrollment, I therefore also constrained to the district’s pri-
vate schools that only appear in the neighborhood of these selected charter and TPSs. Additionally,
other major forms of schooling, such as home-schooling, are missing in measuring the total demand size.
Evidence suggests that they accounted for less than 3% of the total Florida public enrollment in 2013:
https://www.fldoe.org/core/fileparse.php/5606/urlt/Home-Ed-Annual-Report-2022-23.pdf.

35In the U.S., census tracts are “designed to be relatively homogeneous units with respect to population
characteristics, economic status, and living conditions” and “average about 4,000 inhabitants.” Florida has
4245 census tracts in the 2010 Census. Therefore, it is relatively accurate to measure travel distance as the
distance between a tract centroid and a school.

36In their application, the authors need to impute demand size for charter and TPSs from each census
tract of Washington, D.C., using only data of enrollment and tract demographics.
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sizes, thereby better approximating students’ choice under capacity constraint.37 Another
way to properly account for capacity constraints in influencing the rationing of students
is to impose structure on students’ feasible choice set, i.e., what charter schools they ap-
plied to have given them offers, as in Walters (2018). This treatment requires granular
data on students’ applications and acceptance, which I do not have for Florida students.

Following the notation in the model, I use the specification in (11) to represent the
utility of a representative student i living in census tract l in enrolling in school j in year
t, i.e.,wijlt :

wijlt = δ(sjt;α) + λdistjl + ζijlt

= α1ClassSizejt + α3qjt + α4oj + ξjt + λdistjl + ζijlt, (11)

where ClassSizejt is defined by the enrollment per classroom, i.e., Ejt

kjt
.

And therefore, given the distributional assumption on ζijlt, the enrollment of each
school-year is:

Ejt =
∑
l∈L

mlt ·
exp(αxdemand

jt + λdistjl)

1 +
(∑

j′∈J exp(αx
demand
j′t + λdistj′l)

) , (12)

where J denotes all the schools in the district, and L denotes all the relevant census tracts
of a district.38 And xdemand, the individual state variable used in demand estimation, in-
cludes therefore (oj, kjt, qjt, ξjt).

However, incorporating class size into students’ preferences introduces correlations
between class size and hidden school quality ξ. To address this issue, I use a specific
instrument for class size, following the empirical strategy by Bayer and Timmins (2007).39

To adopt this instrument and the estimation procedure proposed by the authors, I use a
two-step approach. In the first step, I run Non-linear Least Square (NLS) on a demand
model that is identical to (11) except that the class size terms and ξ are excluded from the
specification.40 Then, the implied estimates are used to form a predictor for class size from
the model just estimated. In the second step, this predictor, along with other instruments
I pick, is used to form the moment conditions used in estimating a Generalized Method of

37The consideration of class size in students’ preferences is inspired by Urquiola and Verhoogen (2009),
who developed a model to study the sorting of Chilean schools under class-size caps.

38After I select all the schools for the relevant census tracts of a district, I include all census tracts whose
5-mile radius neighborhood has at least one school in the district.

39Richards-Shubik et al. (2021) estimate a discrete choice model in which patients select specialists. In the
model, a similar “congestion effect” is added to patients’ preferences to characterize patients’ unwillingness
to wait in long queues. They use the instrument proposed by Bayer and Timmins (2007) to deal with the
endogeneity problem similar to my context.

40Since there is no ξ in such a model, one does not need to apply the inversion technique (Berry 1994),
and NLS is the appropriate method.
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Moment (GMM) objective function. It is used to find the optimal α̂ and λ̂ that minimize
the correlation between the instruments and the ξjt. In this step, I use the nested fixed
point algorithm, as in Berry et al. (1995), to conduct the GMM. I explain details of the
algorithm, the moment conditions used to construct the GMM objective, and the testing
of whether instruments are weak in Appendix C.1. Note that once the α̂ and λ̂ are found,
one can back out ξjt by standard inversion technique introduced in Berry (1994). Finally,
given α̂ and λ̂, I can then use the following formula,

njt =
∑
l∈L

mlt ·
exp(λ̂distjl)

1 +
∑

j′∈J exp(α̂x
demand
j′t + λ̂distj′l)

,

to construct the market situation variable, njt, faced by each school j at year t. As the
assumption “Consistent Belief” requires, the values of the njt constructed above with all
other state variables have to be also the schools’ beliefs about njt. Therefore, it can further
be used to back out the adjustment cost functions with which schools make decisions.

Operating Cost Ψ(.) and Transitions. To estimate the operating cost of charter schools,
I regress the logarithm of instructional cost from charter audit reports on the relevant
state variables (and polynomials of these variables) and the logarithm of enrollment. Par-
ticularly, I include the local demographics of schools to reflect the cost differentials in
operating charter schools across different regions, as Singleton (2019) points out. To es-
timate the transition function of school performance q, I regress a school’s performance
score on its lag performance score, value-added, and interaction. The interaction term
captures the differentials across different performance levels in the degree of value-added
inputs needed to boost the same amount of performance score. To estimate the transition
of the designation status hp, I exploit the empirical transitions to the contemporaneous
designation status across charter schools conditional only on their past performance and
designation status. This simplifies the modeling of the “2A1B” rule, which, if modeled
precisely as the existing scheme, requires the contemporaneous designation status to de-
pend on three years of past performances. This increases the dimensionality of the state
space dramatically. I also assume that a charter school does not lose the designation as
long as it is designated.41 The rest of the transition functions, i.e., the transition of n, ξ,
and d, are all estimated as AR(1) processes, respectively.

Policy Functions When it comes to the estimation of the expansion policy function of
charter schools, note that fixed costs are involved with increasing the number of class-

41As explained in the industry background, de-designation is rare in the sample. Furthermore, I rarely
observe that eligible (i.e., those that pass the “2A1B” requirement) charter schools are not designated. These
observations might reflect that they do not apply for the designation. Since they are rare, I exclude them
from the estimation sample.
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rooms for instruction, supported by the process of drafting new contracts and obtaining
approval from local school districts. This can also be shown in the lumpiness in the ad-
justment of charter school classroom count. In the structural estimation sample, approx-
imately 83% of charter school observations indicate no adjustment (i.e., an increase or
decrease in the classroom count) throughout the selected sample period. Thus, to char-
acterize such a feature of adjusting capacity, I adopt the (S, s) rule following Attanasio
(2000) and Ryan (2012). Ryan (2012) utilizes this decision scheme to estimate cement
manufacturers’ capacity adjustment policy function for his dynamic game model. In my
context, the (S, s) rule states that each charter school j sets a target k∗

jt, a lower band kjt,
and an upper band k̄jt, in year t based on a statistical rule whose parameters are to be
estimated. According to the rule, a charter school increases classrooms to reach its target
only when it falls below the lower band: ejt = kjt − k∗

jt > 0 if k∗
jt < kjt. It decreases class-

rooms to reach its target only when it exceeds the upper band: ejt = k̄jt−k∗
jt < 0 if k∗

jt > k̄.
Therefore, when the target stays within the bands, charter school j in that year t remains
inactive, i.e., ejt = 0. Therefore, this decision rule can characterize the lumpiness in the
expansion adjustment data. Following their specification, I use a flexible functional form
of the state variables (the h(.) functions below) to estimate both the target and bands, as
shown in (13). 42

k∗
jt = h1(sjt) + u∗

jt

kjt = k∗
jt − exp

(
h2(sjt) + ub

jt

)
k̄jt = k∗

jt + exp
(
h2(sjt) + ūb

jt

)
(13)

Following Attanasio (2000) and Ryan (2012), I use only the observations that involve
non-zero adjustments of capacity to estimate (13). In particular, in estimating the target
equation, I regress the t+1 number of classrooms on state variables of t, and in estimating
the band equations, I regress the difference between t + 1 and t in the number of class-
rooms on current state variables, both using flexible functional forms.43 I also consider the
residuals u∗

jt, ū
b
jt, and ub

jt as structural errors, as to capture the discrepancy between the
estimated policy functions in adjusting capacity and the model-predicted adjustment pro-
cesses. As emphasized in the adjustment costs of charter schools in (6), this discrepancy
may exist due to the unobserved mode of capacity adjustment. I assume the different
structural errors all follow an i.i.d. zero-mean normal distribution with variance (same

42The exponential functional form guarantees that the target is always between the lower and upper
bands.

43Ideally, upper and lower bands should be estimated by the shrinkage and the expansion data sepa-
rately. However, because shrinkage, i.e., the decrease in classrooms, is much less common than expansion,
I assume that the shrinkage decision shares the same statistical relationship with the expansion decision
and estimate the two bands by pooling all observations of expansion and shrinkage.
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across schools) to be estimated, independent of each other.

6.5 Identification of the Adjustment Cost Function

The identification of the key structural parameters in equation (6) for both types of schools
relies on the policy shock and the functional form assumptions imposed on Γ(.).

For charter schools, the cost of exerting v amount of value-added, namely γv, and the
HP-related cost effects, namely γ4, jointly govern the value-added decisions. These pa-
rameters can be separately identified by exploiting the policy shock. The early designated
charter schools, e.g., those designated in 2012, do not need to adjust their value-added to
secure future designation since they can never be de-designated, as the model imposes.
Hence, the difference in value-added choices between these and later-designated schools
helps separate the HP-related cost effects and γv. The separable form of the adjustment
costs separately identifies γv and γ4. Specifically, γv is separately identified from γ4 by
the variation in a school’s performance in the following school year when its capacity re-
mains unchanged. This is because γ4 only affects adjustment costs when charter schools
expand. The identification of γv for TPSs follows a similar logic.

To separately identify the fixed and variable costs of expansion, note that conditional
on expansion, the fixed cost, γ1, does not influence the expansion volume. Therefore,
γ3 can be separately identified by the variation in the magnitudes of expansions across
or within schools. Subsequently, γ1, the fixed cost of expansion, is identified by the fre-
quency of charter schools initiating an expansion. As is set up in the model, γ1 and γ3 are
assumed to follow normal distributions with mean zero and to-be-estimated variance.
These variance coefficients are identified by the variances in magnitude and frequency of
expansion conditional on the state variables as the (S, s) policy functions specify.

Finally, γ1 and γ3 can be separately identified from the γ4, the HP-related effects. This
is so by comparing the difference in expansion choices across charter schools or within
those that experience a change in their HP status in the sample. Identifying the remaining
parameters follows standard practices in the literature.

7 Structural Estimation Results

In this section, I provide the results of the structural estimation. I first show the results
of the offline functions estimated in the BBL’s first stage, and then I proceed to show the
results of the adjustment cost functions estimated in the BBL’s second stage.
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7.1 First Stage: Demand Function and the Transition of n and ξ

I show the results of the demand estimation in Table (6). Panel A shows the estimates
under various specifications of the demand model to facilitate comparison. Panel B shows
the statistics school individual state xjt across schools and years in the estimation sample,
including the implied market situation n and the underlying quality ξ. Panel C shows the
transitions of ξ and n of some districts.

In terms of the demand estimates, I show in column (1) of panel A the result of estimat-
ing the spatial demand model using the proposed instruments in the empirical strategy
with 11,493 school-year enrollment. In total, the coefficients illustrate that households
prefer schools of smaller class sizes, higher performance scores, traditional types, and
less distant schools. I compare these results with another model in which I do not assume
the ξ is correlated with class size. The estimates of this model are shown in column (2).
Compared to such a model, I get a larger estimate of students’ taste in performance and a
smaller one of their taste in distance. The difference in these estimates addresses the role
of capacity constraint in estimating the demand for schooling. A school with higher per-
formance scores and shorter distances is favored more; hence, it is easier for it to hit the
enrollment capacity limit. Ignoring this pattern, one can underestimate the taste for per-
formance score and distaste for distance. In what follows, I regard the results in column
(1) as the structural estimates of demand for the second step of BBL.44

The adjustment cost estimates hinge on the implied enrollment elasticity with respect
to capacity and performance score. Because they convey the perceived marginal return of
expansion and effort of value-added, if the demand elasticity concerning performance
score is underestimated, potentially because high-scored charter schools are capacity-
constrained, one might underestimate the adjustment cost of exerting value-added. In
this regard, I estimate using the same charter school data a log-linear demand model, as in
Singleton (2019), with a flexible functional form. Then, I calculate the elasticity of interest
implied by the adopted model and this log-linear model at certain values of capacity and
performance score. I find that, for a medium-sized charter school having 20 classrooms
and 400 students, with a performance score of 0.6 (B grade), the adopted model predicts
demand elasticities amount to 0.59 and 1.15 for classrooms and performance scores, re-
spectively.45 While the log-linear demand model implies a larger capacity elasticity, at

44One might question the existence of equilibrium of this demand model and how to deal with it in
forward-simulating schools’ enrollment both in estimating the model and in simulation. Bayer and Tim-
mins (2005) have provided the condition of the existence and uniqueness of equilibrium. In the case of this
paper, given the inclusiveness assumption imposed on the demand, one can easily prove that as long as the
taste parameter on class size has a negative coefficient, the equilibrium exists, and it is unique.

45This implies that, for example, increasing 10% classrooms (in this case, 2 = 20 × 10% classrooms),
increase students by 23.6 = 400 × 10% × 0.59. Meanwhile, the log-linear demand predicts that 48 more
students will be enrolled. Given that 48 students can be put into two classrooms, the latter model predicts
that charter schools can increase capacity and automatically enroll more students. It should be emphasized
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Table 6. Demand Estimates and the Implied Transitions of ξ and n

Panel A
Variable With Endogeneity With No Endogeneity

(1) (2)

Class Size -0.071 0.0076
(0.0109) (0.0034)

Performance Score 2.782 0.938
(0.313) (0.398)

Charter -0.321 -0.814
(0.0500) (0.0407)

Distance -0.362 -0.0005
(0.0386) (0.0003)

Panel B
Variables Mean Variance Median

Class Size 18.56 11.20 18.39
Performance Score 0.60 0.12 0.61
Charter 0.15 0.36 0.00
ξ 0.07 2.63 -0.52
n 421.56 448.47 260.79

Panel C
Functions Slope Intercept Observations

Transition of ξ 0.923 0.0360 11493
(0.0029) (0.0051)

Transition of n
Miami-Dade 0.942 134.223 1525

(.00314) (9.213)
Pinellas 0.942 49.274 461

(.00314) ( 7.890)
Polk 0.888 2.042 256

(.00314) (8.096)

Notes: In Panel A, standard errors are in parentheses. 11,493 school-year observations are used to esti-
mate the demand model. Each column corresponds to a specification of the demand model, depending
on whether the quality shock ξ is assumed to be correlated with class size. Each row shows the estimate
of students’ taste on a school characteristics. Panel B shows the summary statistics of school characteris-
tics of the 11,493 school-year observations. Panel C shows the estimates of transition functions of ξ and
n. Standard errors are in parentheses. The transition of n and ξ is estimated using all the available n
imputed from the demand estimates. Particularly, the transition of n is estimated by the specification in
which I assume all districts share the same slope coefficient on the lag while different districts can have
their own intercepts.
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1.26, and smaller performance score elasticity, at 0.51. This illustrates that, if regarding
the adopted model as a benchmark, using a “less-structured” demand model, such as the
log-linear demand, will underestimate the demand elasticity of performance score while
overestimating that of capacity.

I show in Panel B that the averages of n and ξ across all school-year are 421.56 and
0.07, respectively. A large variance exists in terms of n. This is also reflected in the district-
specific intercept estimates of the AR(1) process, as shown in Panel C. In getting the AR(1)
process for all districts, I assume all districts share the same slope coefficient on the lag,
while different districts can have their own intercepts. I use all the available n to estimate
the AR(1). The resulting difference among district-specific intercept estimates emphasizes
the necessity of estimating a district-specific evolution rule of schools’ belief on n.46

7.2 First Stage: Other Offline Functions

I display all the estimates of other offline functions and the related statistics in the tables
in Appendix C.2.

Operating Cost Functions The estimated operating cost function is shown in Table (C1).
It shows close-to-constant returns to scale because the coefficient on the logarithm of en-
rollment is close to one. Additionally, all else equal, a higher performance score is asso-
ciated with less instructional expenditure on average, although the negative relationship
is less in magnitude as the performance score gets higher. For a charter school with an
average performance score of 0.62 (full score is 1), its instructional cost goes down by
0.097 percent as its performance score goes up by 0.1. For capacity, a marginal increase
in classroom holding does not significantly influence the instructional cost of an average-
sized charter school, all else equal. Notably, the estimate also shows that operations under
different local demographic situations, as measured by local income level (measured in
logarithm), involve differential cost, a result similar to Singleton (2019). In particular, a
10 percent increase in mean household income within a 3-mile radius of a charter school
is associated with roughly 0.4 percent less total instructional expenditure, holding other
regressors constant. This cost differential may explain part of the variation expansion
patterns across different demographic environments.

that, although the comparison is useful, it is not necessary that the model I adopt outperformed the log-
linear model in improving the estimates of the adjustment cost. There is a lack of empirical work that
provides benchmark elasticities with which I can compare my estimates.

46To test the sanity of the implied n, I also regress the implied n to schools’ local environment and, not
surprisingly, find that the market situation measures school j faces in year t is positively correlated with its
local population density, household income, and educational background while negatively correlated with
the number of schools in its neighborhood.
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Policy Functions Table (C2) and Table (C3) show the estimates of all policy functions,
including both types of schools’ value-added policy functions and charter schools’ (S, s)
components (target and band). Particularly, I use second-order polynomials in capacity
and performance with rich interaction of the designation status (of charter schools only).
Across the board, all results show the highly non-linear relationship between schools’
decisions on state variables.

In Table (C2), the value-added policy functions of charter and TPSs show the distinc-
tive relationship between the value-added and state variables across the two sectors. As
shown in column (2), a TPS’s value-added is negatively associated with the classroom,
although less so in magnitude if performance is higher, all else equal. This pattern may
reflect the underlying teachers’ production function of test scores. Teachers’ efforts at tra-
ditional schools might be less if they need to teach many classes, and this burden might
be alleviated if schools’ management is more efficient, as reflected in high performance
levels. Notably, for TPSs, value-added is significantly associated with higher market situ-
ation n, all else equal. This is similar to the relationship between local household income
and TPSs’ value-added. When it comes to charter schools, the estimated value-added pol-
icy function shows, in general, less dependence on the selected state variables. As shown
in column (1), the value-added decisions of charter schools are positively associated with
the interaction of HP status and market situation and the squares of performance level,
all else equal. For the HP status, performance, and capacity, their respective marginal
changes do not appreciably change the value-added of charter schools. This might pri-
marily be due to the specification choice. A standard F-test rejects the null hypothesis
that the coefficients on all these state variables and their interactions are jointly zero (p-
value<0.001). Additionally, this might reflect that the pattern of value-added decisions is
less systematic across various charter schools in terms of how their value-added decisions
are dependent on the selected state variables.

In Table (C3), I show the estimates of the expansion policy function of charter schools
using the (S, s) rule. For the specifications of the target and the band equations, I apply
second-order polynomials and rich interaction of the state variables. Notably, the results
manifest differences in patterns of expansion across non-HP and HP charter schools in
both the target equation and the band equation, as is shown by the significant coefficients
on the HP dummy (1 for HP, 0 for non-HP) and its correlation with other state variables.
The results suggest that HP charter schools tend to set larger targets and, once initiating
an expansion, expand more than the non-HP charter schools, all else equal. Such effects
vary across HP charter schools in regions with different income and market situations.
The estimates of the target equation also suggest that larger charter schools tend to have
larger capacity targets. 47

47It should be emphasized that some of the coefficients in the expansion rules are not precisely estimated.
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Transition Functions I show all the rest of the transition functions in Table (C4). No-
tably, the performance transition function suggests that schools’ performance score pos-
itively correlates with the past score and the value-added. All else equal, for a school
performed at the average (0.62), the marginal increase of the average teacher value-added
by 1 unit, and the performance score increased by 0.152. Higher past performance is as-
sociated with a higher contribution of value-added in future performance scores, which
might suggest that schools’ efforts in maintaining effective teachers and the students’ past
performances are complementary in producing test scores. As for the HP designation, the
estimates reflect the empirical transition of charter schools into the designation: among
all the non-HP charter schools, “A” charter schools get designated in the next period with
a probability of 0.345, B with 0.037, and C or below with zero probability. Finally, the es-
timates of the household income transition show that it is relatively persistent over time.

7.3 Second Stage: Adjustment Cost Function

With the offline functions estimated, I show in Table (7) the estimates of the adjustment
cost function using the BBL estimator. The computation details in this BBL second stage,
such as the selected initial states, implementation of the perturbation on the policy func-
tions, and the simulation parameters, are in Appendix C.3.

I run the structural estimation separately for charter and TPSs using their observa-
tions. Table (7) concludes the structural estimates for the adjustment cost function Γ(.).
All estimates are in terms of cost, and hence, a negative number means a reduction of
cost. The effect of HP designation on the variable cost of expansion, γ4, is positive and
precisely estimated, indicating that the HP designation decreases the variable cost of an
expansion. Combined, these results align with the policy contents: The policy facilitates
expansion for the HP charter schools and does so as charter schools expand more. With a
back-of-envelope calculation, holding fixed the expansion choices HP charter schools ac-
tually make, removing the HP designation saves their total expansion cost by 18.8%. The
estimates of γv show that exerting value-added is costly for both charter schools and TPS.
However, charter schools have lower costs. This might imply that charter schools have
a higher efficiency in managing teachers and directing teaching goals to test scores. The
fixed cost of expansion, γ1, is estimated with large relative standard errors. The variable
cost of expansion in increasing one classroom, γ3, is estimated precisely and smaller than

This is due to data limitations. Ideally, one could get a more precisely estimated expansion rule if adjust-
ments of classrooms are observed more or, in this context, the capacity is measured in the student count
instead of classrooms for instruction. To ensure the (S, s) rule is an acceptable approximation of how char-
ter schools make expansion decisions, I test the in-sample fitness of the (S, s) rule. From the sample I use
to estimate the (S, s) rule, I pick all charter school observations that have next-period data available, plug
their states into the estimated (S, s) rule to predict their expansion behavior, and compare the predicted
behavior with the actual expansion behavior in the next period. The estimated (S, s) rule approximates the
mean expansion well in extensive and intensive margins.
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the cost of value-added per unit of change.

Table 7. Estimates of Γ(.) and Standard Errors

Adjustment Cost

Charter TPS

Mean Value-added Cost, γv 8.059 24.080
(0.312) (0.214)

Mean Fixed Cost of Expansion, γ1 -0.103
(2.022)

Mean Variable Cost of Expansion, γ3 4.284
(0.458)

HP’s Effect in Reducing Variable Cost, −γ4 0.817
(0.227)

Variable Benefit of Shrinkage, γ5 4.284
(0.330)

Standard Variance Coefficient
Value-added 0.046 0.226

(0.427) (0.271)
Fixed Cost of Expansion 0.103

(0.547)
Variable Cost of Expansion 0.082

(0.065)

Notes: Standard errors (in parenthesis) are obtained by bootstrap. I re-sample half of the initial states
randomly 50 times with the same set of perturbed policy functions. All parameters are estimated assum-
ing discount factor β = 0.9, per-enrollment reimbursement r = rE = 0.08 representing eight thousand
per student, and utility weight on school performance score rq = 1.6. All parameters can be regarded as
measured in hundreds of thousands of dollars.

All the estimates can be expressed in dollar terms since the revenue and cost of char-
ter schools (and the imputation scale applied to the TPSs accordingly) are all measured in
dollars. The result suggests that, on average, for the non-HP charter schools, adding one
classroom costs around $427,538, equivalent to $734.6 per square foot for a 900-square-
foot classroom size. This cost number, therefore, lies in the range of the average construc-
tion cost of education facilities found in some major U.S. cities.48 Compared to the vari-
able cost of adjustment, the fixed cost of increasing the classroom and the value-added
costs have fewer accounting estimates to compare with. The fixed cost of increasing ca-
pacity is tiny. While increasing 1 unit of value-added, i.e., mean teacher value-added
score in a school, costs about $0.81 million for charter and $2.41 million for TPS. This may
seem relatively high. However, according to the estimated performance transition func-
tion, this can move a school from grade C to almost grade A (by purely increasing the

48See for example:https://www.statista.com/statistics/830447/construction-costs-of-educational-
buildings-in-us-cities/.
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effectiveness of teachers).49

Finally, I compare my cost estimates with Singleton (2019) ’s estimate of entry cost.
His estimate suggests around $10 million entry cost for Florida charter schools having
250 students. In Florida context, this roughly implies $858000 costs per classroom (of
around 20 students), 1.9 times larger than my cost estimate of expanding capacity. This
might suggest adding the same capacity at the intensive margin (by adding classrooms) is
less costly than extensive margin expansion (by entry).50 Therefore, capacity deregulation
policy, especially the focused incentive scheme in this paper, might be a more effective
way to increase charter sector provision of access.

8 Policy Counterfactuals

The primary goals of this paper are to evaluate the policy effects of the existing HP scheme
and explore alternative schemes that aim at the supply of quality education in the aggre-
gate. In the following counterfactual policy experiments, I anchor the idea of incentiviz-
ing by authorizing expansion eligibility of charter schools,51 and hence focus on deviating
the existing scheme by targeting differently on “who should expand more easily” while
holding fixed the other model primitives. Particularly, I propose two schemes: the no-HP
scheme and the scheme that gives additional expansion eligibility to high value-added
charter schools. I compare them, respectively, with the existing HP scheme. The former
comparison aims to decompose the effect of introducing the policy on students’ access
and education quality and provide an aggregate analysis of the entire education sector.
The latter aims to explore whether targeting value-added increases, specifically the qual-
ity of education and accessibility for disadvantaged households. In future versions of
the paper, I plan to consider more counterfactual experiments, for example, deregulating
all charter schools in expansion eligibility or limiting the expansion eligibility to charter
schools located in areas of low-performing TPSs.

49It should be emphasized that these estimates should be more properly thought of as the difference
between schools’ certain decisions and doing nothing, i.e., creating zero value-added and not adjusting
capacity. Therefore, I implicitly assume that exerting zero value-added and adjusting no capacity have
zero adjustment costs. However, it is difficult to justify whether this is appropriate because, particularly,
there exists limited research on how costly it is to increase mean teacher value-added within a school, the
measure adopted in this paper.

50It should be emphasized that the adjustment cost might not be linear in the additional classroom, as the
functional form adopted in this paper. In future versions, I will experiment with more, especially nonlinear,
forms of adjustment cost function.

51Although I focus on the charter sector policy change in this paper, this model can also be used to analyze
the supply side changes on the traditional sector or on both sectors.
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8.1 Analyzing Framework

Three features of the model capture schools’ responses to the change of charter school
regime: the adjustment cost of expansion, the transition of the HP designation, and the
belief about the market situation as shown in Table (8). The no-HP scheme eliminates the
possibility of the expansion benefit for the eligible charter schools as well as the designa-
tion system (hpt = 0,∀t). The Target-va scheme maintains the designation system while
changing the targeted schools from only High-performing charter schools to additionally,
high-value-added charter schools. Specifically, if a charter school’s value-added is higher
than the 50% percentile, denoted as ṽ, of the average value-added of the entire charter sec-
tor (in all the observed years), the charter school gets the designation and enjoys the same
cost reduction as the HP charter schools in expansion benefit. In all schemes, the equilib-
rium belief on the market state needs to be recalculated to satisfy the “Consistent Belief”
assumption. In what follows, I denote such beliefs as respective, νHP, νno-H, and νTVA for
the existing HP scheme, no-HP scheme, and the scheme that target high value-added.

Table 8. Changes of Primitives of Policy Counterfactuals

Existing HP Scheme “No-HP” “Target-va”

Γcharter γ4 = γ̂4 γ4 = 0 γ4 = γ̂4

η prob(hpt+1|hpt, qt) =
η̂(hpt, qt)

hpt = 0, ∀t η̂(hpt, qt), and hpt+1 = 1 if vt ≥ ṽ

ν νHP νno-HP νTVA
νHP =: ν̂(njt) Change according to the “Consistent Belief” Assumption.

When comparing schemes, I focus on two channels. One channel is the change of the
target of the charter designation system and the adjustment costs of expansion. The other
channel is the associated change in the competition environment, as characterized by the
change of belief on the market situation state n. I call the former “incentive channel” and
the “latter competition channel.” The incentive channel describes the effect particularly
on charter schools by changing their incentive to exert effort. The competition channel
characterizes how both types of schools, in equilibrium, change their effort given the
change in the charter sector.

Particularly, I use equation (14) to decompose channels.

Y HP − Y noHP = Y HP − Y HP
νno-HP︸ ︷︷ ︸

Competition Effect

+ Y HP
νno-HP

− Y noHP︸ ︷︷ ︸
Incentive Effect

(14)

Take the comparison between the no-HP scheme and the existing HP scheme as an exam-
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ple. Denote Y noHP and Y HP as an outcome benchmark, Y , of the market of interest under
the no-HP scheme and the existing HP scheme at the equilibrium. Then the total effect
of the existing HP scheme transforming from the no-HP scheme is Y HP − Y noHP . Denote
Y HP
νno-HP

as the outcome under the existing HP scheme while the belief ν(.) maintaining at
the no-HP scheme. In other words, schools do not believe that the policy change will alter
the evolution of the market state. I refer Y HP − Y HP

νno-HP
to be the competition effect, as the

difference “controls” for the scheme change, while Y HP
νno-HP

−Y no−HP as the incentive effect,
as the difference holds constant the equilibrium belief. From the equation, if the outcome
benchmark is constrained to the traditional sector, the incentive effect is zero.52

8.2 Implementation Methodology

The equilibrium concept adopted in the model requires an iterative process of getting the
consistent belief that is consistent with the belief on which all schools in the market make
decisions based over time. Therefore, the computation procedure adopted in this paper is
built on previous work on using simplified state space to calculate dynamic equilibrium
(Krusell and Smith 1998; Ifrach and Weintraub 2017). However, the procedure I adopt
differs in an important way. I pick specific districts and set the initial states to be the
districts’ 2012 states. Additionally, when schools update their beliefs, instead of using a
stream of steady states to update the belief on the market state, as previous work did, I
use a stream of states 10 years forward of the market. I choose this deviation because the
primary goal of the paper is on accessing relatively short-term (e.g., less than a decade)
transitional dynamics of these policy changes instead of their longer-term implications
on the steady state of schools’ performance.53 I explain more details of the computation
procedure in Appendix D. In this version of the paper, I pick the largest school district
in Florida, the Miami-Dade district, to conduct my counterfactual simulation. It not only
accounts for almost 20% of enrollment in my sample, but it also has a relatively higher
charter market share. Accordingly, I adopt the estimated transition rule of the market
situation n of Miami-Dade to simulate the existing HP scheme.

8.3 Results

In this subsection, I show the results of two comparisons of the focused charter incen-
tive schemes. The outcome benchmarks are the evolution of the distribution of deci-

52It should be emphasized that there exist other important ways in the real world in which charter policy
affects the traditional sector. For example, Ladd and Singleton (2020) find that the removal of the statewide
cap on charter school entry in 2011 imposed a large and negative fiscal impact in excess of $500 per tradi-
tional public school pupil.

53This research goal is, therefore distinct from the previous work using the similar algorithm that focus
more on the steady state analysis of an industry.
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sions (value-added and expansion) and the implied performance and capacity transition
of each sector of the education market.

8.3.1 Charter Sector: No-HP v.s. HP

I show in Figure (3) the result of comparing the no-HP scheme with the HP scheme in the
mean performance of the charter sector and its mean access provision (i.e., capacity). The
green lines indicate the trend under the existing HP scheme, while the red line represents
the situation of the no-HP scheme. As is implied by equation (14), to decompose channels,
I draw a blue line to represent a certain outcome under the HP scheme with the belief
not yet updated from the non-HP scheme, denoted by Y HP

νno-HP
. Therefore, the difference

between the green and blue lines represents the competition effect, and the difference
between the blue and red lines represents the incentive effect. I use ten years to be the
inspection window.

Figure 3. No-HP v.s. HP: Mean Charter Performance and Capacity in 10 Years

From the figure, under the HP scheme, the performance of the charter sector increases
over time, more so than that of the non-HP scheme. The competition accounts for a larger
increase in influencing the mean performance. At the end of the inspection window,
the mean performance score of the charter sector under the HP scheme is higher than
that of the non-HP scheme by 0.073, and competition accounts for 67.8% of such differ-
ence. When it comes to access provision, the charter sector also expands at a higher speed
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under the HP scheme at the beginning of the inspection window. The mean capacity in-
creases in 10 years, which is 11 and 8, respectively, in classrooms under the HP and no-HP
schemes. The incentive effect accounts for most of the expansion, contributing to 91.6%
of the mean capacity difference between the HP and no-HP at the end of the inspection
window. Combining the results, the HP scheme increases both the provision of seats and
the mean performance of the charter sector. The increase of charter capacity brought more
“directly” by the policy influences the competition environment of the entire education
sector and “ripples” back to influence the charter sector itself in its performance.

8.3.2 Charter Sector: HP v.s. Target Value-Added

I simulate a counterfactual policy that gives additional expansion eligibility to charter
schools once observed to exert higher-than-median value-added observed in the data.
An immediate effect of this new designation system is the increased proportion of char-
ter schools with the HP designation in a short period compared to the existing scheme.
By inspecting the additional charter schools designated over the years, compared to the
existing scheme, they are roughly 30% more likely to have medium or low neighborhood
income. Therefore, the Target Value-Added scheme essentially gives more designation to
low-performing and high value-added schools.

It is an empirical question whether these designated charter schools, especially those
not designed (or not designated earlier during the inspection window) under the exist-
ing HP scheme, increase their enrollment capacity after their designation under the new
scheme. As shown in the offline function estimate in Table (C1), operating cost is higher in
lower-income regions. Therefore, given this demographic heterogeneity, it is ambiguous
whether giving these charter schools a designation increases the provision of seats.

Repeating the same dimensions of comparison, I show in Figure (4) that the new pol-
icy does increase the sector’s capacity. Compared with the existing HP scheme (red), the
Target Value-Added scheme (green) results in 5.62 more classrooms in the mean capacity
at the end of the inspection window. Moreover, the contribution of such additional differ-
ence can be shown to come additionally from the charter schools serving the lower income
households. Similarly to the patterns observed, the mean capacity difference across the
Target Value-Added scheme and the existing HP scheme comes more from the incentive
effect.

50



Figure 4. HP v.s. Target Value-added: Mean Charter Perf. and Capacity in 10 Years

The mean performance under the Target Value-Added scheme is also higher than the
existing HP scheme over time, amounting to 0.077 in the final year. Still, the decomposi-
tion shows competition accounts for a larger effect in influencing value-added.

8.3.3 Traditional Sector Performance Across Schemes

In Figure (5), I compare three schemes in the performance of the traditional sector, in
which I find similar results as in the charter sector. The existing HP scheme outperforms
the no-HP scheme in both metrics, the mean and median performance of all TPSs in the
market. By definition, the competition channel accounts for all the effects. Given that
the traditional sector shows similar performance trends, it serves as a ”magnifier” of the
charter sector policy change. However, the existing scheme falls behind the Target Value-
added scheme. The difference between the mean performance of all TPSs at the end of the
year for the existing scheme and the Target Value-added scheme reaches 0.05 (=0.73-0.68)
in 10 years, slightly lower than the difference seen in the charter sector, while the median
difference reaches 0.07 (0.7-0.63). This shows that the effect of competitive spillover from
the charter sector policy change to the traditional sector is the largest in the Target Value-
added scheme.

51



Figure 5. Comparison of Mean Traditional Sector Performance at 10th Year across Schemes

8.3.4 Comparison of Variance in Performance and Equality of Charter Access

It is an empirical question whether, under the Target Value-Added scheme, the discrep-
ancy of school performance across high- and low-income neighborhoods increases or de-
creases, as compared to the existing scheme. On the one hand, under the Target Value-
Added scheme, getting a designation is easier for the charter schools serving low-income
regions; they might exert little effort after the designation. On the other hand, the po-
tential increase of the charter capacity in the low-income region might trigger more com-
petition given the belief about the newly designated charter schools’ future expansion.
This might push charter and traditional public schools in those regions to increase perfor-
mance. Which direction in the simulation hinges on the perceived returns and cost of ex-
erting value-added (of both types of schools) and adjusting capacity (of charter schools).
This justifies using a structural model to quantify these “deep” parameters.

In Figure (6), I shed light on the comparison of schemes of interest. In the current
simulation, the Target Value-added scheme improves equity of access to high-quality ed-
ucation, as revealed by various metrics. When it comes to the most straightforward mea-
sure of equality of education, the performance variance across all schools in the market,
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the Target VA scheme scores the lowest (0.09). This provides the first support for im-
plementing the Target VA scheme in regulating charter school capacity. Additionally, I
find that the mean charter capacity of schools in the lowest income decile regions in the
market is highest in the Target VA scheme (36). Furthermore, the mean performance of
schools in the lowest income decile regions is also the highest in the Target VA scheme
(0.66). These results imply that lower-income households get more and better access to
education under the Target VA scheme.

Figure 6. Comparison of Education Equality at 10th Year across Schemes

The potential mechanism driving these results is that such a scheme incentivizes more
expansion of high-value-added charter schools in the lower-income regions. Under the
existing scheme, these charter schools do not get expansion eligibility. They are not
“High-performing” not because they do not have high value-added on students’ test
scores but because the local students enrolled are more disadvantaged, pushing these
schools’ performance down. By giving more eligibility instead to the high value-added
charter schools, charter schools in lower-income regions have more incentive to increase
performance, reducing the variance of performance across schools. This also increases the
equity of access because the increase of the charter capacity under the Target Value-Added
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scheme is closer to the level of the higher-income regions under the existing scheme.

9 Conclusion

In this paper, I exploit a novel policy incentivizing charter schools with expansion eligi-
bility. I leverage the policy to explore the design of a charter capacity regulation policy
that can potentially increase education equality and provide more access to under-served
students. I collect administrative data and use them to conduct statistical analysis and
run policy simulations with a model. I find suggestive evidence that charter capacity
adjustment cost might be substantial and that alleviating such cost creates competitive
spillover across sectors. I highlight these two mechanisms in a dynamic model of school
decision-making to explore the aggregate policy effect further and explore the implication
of targeting value-added to allocate expansion eligibility. I find that the existing scheme
and the scheme that targets value-added increase the mean performance and accessibility
of the charter sector, as well as the mean performance of the traditional sector. How-
ever, the existing scheme can be improved by targeting better, e.g., the value-added. Such
a scheme improves equity of access to high-quality education by increasing the perfor-
mance and accessibility of the schools serving lower-income neighborhoods.

The current model restricts the dimension of students’ heterogeneity only to their res-
idential location. This does not allow the model to answer questions such as how the
student demographic distribution will be changed if the policy were not implemented.
As the preliminary evidence shows, TPSs tend to have a higher proportion of students
who need free and reduced-price lunches as they are surrounded by a higher number
of HP charter schools. This is suggestive evidence that, as charter schools expand, more
students might re-sort from their original TPS to nearby, expanded HP charter schools.
The sorting within local neighborhoods can be critical to the distribution of performance
across schools. To allow this into the model, I need to allow for students to differ in
terms of demographics additional to residential location, such as race, and factor such
demographic differences in their taste parameters to schools’ characteristics, such as per-
formance. In this way, the demand can capture the differences in the taste between high
and low-income families in their taste of school performance scores, which can be influ-
enced by schools. In this regard, such a richer model might contribute to the dynamic
sorting (Bayer et al. 2016; Hahn and Park 2022) literature by allowing for endogenous
school adjustment decisions.
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A Figure Appendix

A.1 Event Study of Competitive Spillover on the TPSs

Aigkt =
3∑

ℓ=−4

βℓ1ℓ=t−2011 × Treati + ρAigkt−1 +
3∑

ℓ=−4

αℓ1ℓ=t−2011+

ηTreati + γZigkt + ϵigkt

Figure A1. Event Study of TPS Competition Responses in Test Scores
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A.2 Event Study of HP Designation on Charter Capacity and Enrollment

Figure A2. Coefficient Plots of βℓs for Classroom Count 2007−15 and Enrollment, 2007−19
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B Table Appendix

B.1 Robustness Tests on the Diff-in-Diff Results

Table B1. Using Alternative Measurements of the TPS Competition Response Tests

Alternative Treatment Measure

(1) (2) (3) (4) (5)
VARIABLES #HP in 3 Exist in 3 Exist in 5 #A in 3 #A in 5

HP Exposure X After 2011 0.013*** 0.019*** 0.018*** 0.006** 0.003
(0.003) (0.007) (0.006) (0.003) (0.002)

#Charters in 2011 in 5 Miles X After 2011 -0.003** -0.003** -0.004** -0.003** -0.004**
(0.002) (0.002) (0.002) (0.002) (0.002)

Observations 55,304 55,304 55,304 55,304 55,304

Table B2. Other Variants of the TPS Competition Response Tests

Outcomes under Sample Selection Outcomes: Read and Math

(1) (2) (3) (4) (5)
>80 Match >90 Match Full Sample Read Math

HP Exposure X After 2011 0.008*** 0.009*** 0.010*** 0.009*** 0.008**
(0.002) (0.003) (0.002) (0.002) (0.003)

#Charters in 2011 in 5 Miles X After 2011 -0.004** -0.007*** -0.005*** -0.002 -0.006***
(0.002) (0.002) (0.001) (0.002) (0.002)

Observations 52,286 27,599 83,004 27,593 27,593
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B.2 Measurement

Table B3. Full List of Variables with Measurement and Availability

Variable Meaning Measurment Data Availability

Part A. Endogeneous States and Decisions
kt Capacity For charter schools, this is the number of class-

rooms in year t. For TPSs, this is the largest en-
rollment observed during 2007-2019 divided
by 22.

qt Performance level For both types of schools, this is the account-
ability score in year t− 1

hpt Designation For charter schools, this is the designation sta-
tus in year t. For TPS, this is zero in all situa-
tions.

et Increment in classrooms For charter schools, this is the first-difference
of classrooms in t+1 and t. For TPSs, this is
zero in all situations.

vt Average value-added of teachers
in the school

For both types of schools, this is the average
teacher value-added score within a school in
year t

2012-2019

n̄jt Inclusive value about the market
situation

Demand model-implied Estimated

Part B. Other State Variables
djt Local demographics The mean household income of all census

tracts within 3-mile radius of a school.
ξjt Hidden quality Demand model-implied Estimated
ϵt Unobserved heterogeneity Random normal

Part C. Other Variables in the Model
mlt Local market size ACS tract level school attendance to K-8

grades of tract l in t, tuned according to pri-
vate school enrollment using Ferreyra and
Kosenok (2018) method

distjl Travel distance to school Crowfly distance between school j and tract l
Ejt Enrollment For both types of schools, this is the total en-

rollment of K-8 grades from the NCES and
Florida Master Files

Ψjt Operating cost of charter school For charter schools, this is the total instruc-
tional expenditure

2007-2015

C Model and Estimation Appendix

C.1 Spatial Demand Estimation

The nested fixed point (NFP) algorithm comes from Berry et al. (1995). This algorithm
finds the optimal λ̂ that minimizes the correlation between the instrument Z and the
derived ξ̂ coming from the Berry (1994) inversion. That is, in the inner loop, I match
the market share with the derived ξ̂(λ̂) given a guess of λ̂. And get α̂ by two stage least
square. In the outer loop, the GMM objective is minimized wrt. λ̂:

min
λ̂

ξ̂(λ̂)′ZWZ ′ξ̂(λ̂),

where W is a weighting matrix.
I use four sets of instruments Z = {xdemand, ZBT , ZBLP , Zdemo}. The demand inputs

xdemand is independent with ξjt because I assume ξjt exogenously evolve as an AR(1), as
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in Sweeting (2013). Given the assumption on x the validity of the ZBT is followed by
construction. It is a predicted enrollment Êjt divided by kjt where the construction of
Êjt follows the following procedure. I run non-linear least square (NLS) estimation on a
model that is identical to the original model except that there exists no ξjt or ClassSizejt

in students’ indirect utility specification. This Êjt therefore is independent with ξjt by con-
struction. The set of instruments ZBLP includes the number of charter and TPSs within 5
miles and 5 to 10 miles, and the total capacity of those schools. I call it BLP instrument be-
cause it shares the similarity of using other firms’ exogenous characteristics to instrument
for a firm’s own endogenous characteristics . These characteristics influence j’s class size
(via influencing j’s enrollment) in year t but are assumed to be independent with j’s own
quality shock ξjt. I also add local demographics, such as population density, in Zdemo of
j in year t as part of the instruments. I regress the class size of j in t on only the Bayer
and Timmins (2007) instruments and all the instruments, respectively. I run F tests on
both regressions. The results reject (p-value<0.001) on both cases the hypothesis that all
coefficients are jointly zeros.

C.2 BBL Estimation Results

Table C1. Estimate of Operation Cost

(1)
Outcome: log(instructional cost)

log(enroll) 0.997***
(0.015)

Performance Score -2.057***
(0.452)

Performance Score 2 1.748***
(0.368)

#Classroom -0.002
(0.002)

#Classroom 2 0.000
(0.000)

Neighborhood Income -0.039**
(0.016)

Constant 9.229***
(0.246)

Observations 1,312
R-squared 0.917
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Table C2. Estimate of Value-added Functions

(1) (2)
Outcome: value-added

HP Designation 0.108
(0.328)

#Classroom 0.000 -0.008***
(0.003) (0.001)

#Classroom 2 0.000 0.000
(0.000) (0.000)

Performance Score -0.779 0.185
(0.630) (0.143)

Performance Score 2 1.100** -0.121
(0.515) (0.117)

HP Designation X #Classroom 0.004
(0.005)

HP Designation X Performance Score -0.011
(0.279)

Performance Score X #Classroom -0.002 0.011***
(0.004) (0.001)

Performance Score X #Classroom X Performance Score -0.006
(0.007)

Market Situation (n) 0.000 0.000***
(0.000) (0.000)

Neighborhood Income 0.024 0.025***
(0.019) (0.004)

HP Designation X Market Situation (n) 0.000*
(0.000)

HP Designation X Neighborhood Income -0.008
(0.026)

Constant -0.158 -0.280***
(0.309) (0.064)

Observations 1,430 9,555
R-squared 0.126 0.101
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Table C3. Estimate of Expansion Functions

(1) (2)
Outcome: Target Outcome: Band

HP Designation 73.349** 4.935**
(37.133) (2.345)

#Classroom 0.890*** 0.017
(0.250) (0.016)

#Classroom 2 0.000 -0.000
(0.003) (0.000)

Performance Score -15.698 1.118
(41.591) (2.627)

Performance Score 2 15.654 -0.863
(35.882) (2.266)

HP Designation X #Classroom -0.194 -0.046
(0.702) (0.044)

HP Designation X Performance Score -8.932 -0.883
(28.580) (1.805)

#Classroom X Performance Score -0.145 -0.006
(0.357) (0.023)

HP Designation X #Classroom X Performance Score 0.017 0.068
(0.996) (0.063)

Market Situation (n) 0.001 0.000
(0.002) (0.000)

Neighborhood Income 1.591 0.239**
(1.479) (0.093)

HP Designation X Market Situation -0.006* 0.000
(0.003) (0.000)

HP Designation X Neighborhood Income -5.083* -0.370*
(2.984) (0.188)

Constant -6.150 -1.209
(21.839) (1.379)

Observations 352 352
R-squared 0.546 0.068
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Table C4. Estimate of Transition Function of Performance

Outcome: Performance Score (1)

Performance Score in t− 1 0.582***
(0.020)

value-added 0.068
(0.042)

Performance Score in t− 1 X value-added 0.136*
(0.071)

Constant 0.255***
(0.012)

Observations 9,430
R-squared 0.642

C.3 BBL Estimation Details

I pick the states in 2012 for both types of schools to be the initial states. For every initial
state, I forward simulate 100 periods with 100 draws. For charter schools, I generate 500
perturbed policies in which I randomly pick one of the following estimated value-added
policy function, band equation, and target equation to perturb. For TPSs, I just perturb
their value-added policy function. To construct the perturbed policy, I simply add to
the estimated functions a normal error, with variances chosen to be relatively small and
close to Ryan (2012)’s corresponding choices. To get the standard errors of the structural
estimates, I bootstrap 50 times using half of the initial states with the same set of perturbed
policy functions. In the current version of the simulation, I also tune down the shrinkage
cost to rule out unreasonable results.

D Computation and Simulation Appendix

I first start with a belief of ν(.) in an iteration step. Then I solve the dynamic programming
problems for schools given the ν(.). This step gives me the policy functions implied by
ν(.), with which I can forward simulate the stream of the states, including the market
state n. With this, I update schools’ belief about the n and carry that forward to the next
iteration step until the the updated ν(.) is close enough to the one used to produce it.

Particularly, this implies the following procedure. In the current version of the simu-
lation results, L = 1 and T = 20. In the future versions, I will increase the total number of
simulation draws, L.

1. Start from an initial guess of ν1(n). Solve the implied expected value function
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V̄ (ν1)(s). Pick a market whose state is

s0 = (o, q0, k0, hp0, d0, ξ0,m0, n0)

2. Simulate one path for horizon T of interest, starting from s0 for L times under the
belief νi(n), the i’s iterate of n’s transition

• Regard heterogeneity deterministic at the estimated mean

• Solve for z(ν1)(s) by value function iteration

• For each school, use z(ν1)(s) and get one path of n according to the inclusive
value formula:

{n̂t : t = 0, . . . , T}

• Get νi+1(n) by estimating an AR(1) using the this path of n̂

3. Repeat until νi+1(n) is close enough to νi(n). Denote the converged transition as:
ν(n)

4. Use the model under ν(n) and the initial state s0 to simulate outcomes of this market.
Repeat the above procedure for each picked market.

In solving the dynamic programming problem, I use discretization method and value
function iteration. In implementation, due to the long computation time, I have to balance
the computation budget and the granularity of the state space. Therefore, when deciding
the number of discrete values for each state variable, I intentionally allow for more values
on the market situation state n. The running model uses the following specification of the
state space for charter schools. For TPSs, their state space is similar but they have only
one value of hp state and that their capacity space is allowed to be wider but coarser.
Under this specification, solving the value function one time costs 33 minutes under the
1e-4 tolerance level with the absolute norm criterion.

Table D1. Evenly Distanced Grids of Each State of Charter School

Endogenous States Exogenous States

State Min Max # Grid State Min Max # Grid
q 0.4 0.9 6 d 10.97 12.18 4
k 1 61 13 ξ -2 8 6
hp 0 1 2
n 300 1300 21
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